Products of commutative rings
Content created by Fredrik Bakke, Egbert Rijke, Maša Žaucer and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2024-02-06.
module commutative-algebra.products-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups open import ring-theory.products-rings open import ring-theory.rings
Idea
Given two commutative rings R1 and R2, we define a commutative ring structure on the product of R1 and R2.
Definition
module _ {l1 l2 : Level} (R1 : Commutative-Ring l1) (R2 : Commutative-Ring l2) where set-product-Commutative-Ring : Set (l1 ⊔ l2) set-product-Commutative-Ring = set-product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) type-product-Commutative-Ring : UU (l1 ⊔ l2) type-product-Commutative-Ring = type-product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) is-set-type-product-Commutative-Ring : is-set type-product-Commutative-Ring is-set-type-product-Commutative-Ring = is-set-type-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) add-product-Commutative-Ring : type-product-Commutative-Ring → type-product-Commutative-Ring → type-product-Commutative-Ring add-product-Commutative-Ring = add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) zero-product-Commutative-Ring : type-product-Commutative-Ring zero-product-Commutative-Ring = zero-product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) neg-product-Commutative-Ring : type-product-Commutative-Ring → type-product-Commutative-Ring neg-product-Commutative-Ring = neg-product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) left-unit-law-add-product-Commutative-Ring : (x : type-product-Commutative-Ring) → add-product-Commutative-Ring zero-product-Commutative-Ring x = x left-unit-law-add-product-Commutative-Ring = left-unit-law-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) right-unit-law-add-product-Commutative-Ring : (x : type-product-Commutative-Ring) → add-product-Commutative-Ring x zero-product-Commutative-Ring = x right-unit-law-add-product-Commutative-Ring = right-unit-law-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) left-inverse-law-add-product-Commutative-Ring : (x : type-product-Commutative-Ring) → Id ( add-product-Commutative-Ring (neg-product-Commutative-Ring x) x) zero-product-Commutative-Ring left-inverse-law-add-product-Commutative-Ring = left-inverse-law-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) right-inverse-law-add-product-Commutative-Ring : (x : type-product-Commutative-Ring) → Id ( add-product-Commutative-Ring x (neg-product-Commutative-Ring x)) ( zero-product-Commutative-Ring) right-inverse-law-add-product-Commutative-Ring = right-inverse-law-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) associative-add-product-Commutative-Ring : (x y z : type-product-Commutative-Ring) → Id ( add-product-Commutative-Ring (add-product-Commutative-Ring x y) z) ( add-product-Commutative-Ring x (add-product-Commutative-Ring y z)) associative-add-product-Commutative-Ring = associative-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) commutative-add-product-Commutative-Ring : (x y : type-product-Commutative-Ring) → Id (add-product-Commutative-Ring x y) (add-product-Commutative-Ring y x) commutative-add-product-Commutative-Ring = commutative-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) mul-product-Commutative-Ring : type-product-Commutative-Ring → type-product-Commutative-Ring → type-product-Commutative-Ring mul-product-Commutative-Ring = mul-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) one-product-Commutative-Ring : type-product-Commutative-Ring one-product-Commutative-Ring = one-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) associative-mul-product-Commutative-Ring : (x y z : type-product-Commutative-Ring) → Id ( mul-product-Commutative-Ring (mul-product-Commutative-Ring x y) z) ( mul-product-Commutative-Ring x (mul-product-Commutative-Ring y z)) associative-mul-product-Commutative-Ring = associative-mul-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) left-unit-law-mul-product-Commutative-Ring : (x : type-product-Commutative-Ring) → Id (mul-product-Commutative-Ring one-product-Commutative-Ring x) x left-unit-law-mul-product-Commutative-Ring = left-unit-law-mul-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) right-unit-law-mul-product-Commutative-Ring : (x : type-product-Commutative-Ring) → Id (mul-product-Commutative-Ring x one-product-Commutative-Ring) x right-unit-law-mul-product-Commutative-Ring = right-unit-law-mul-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) left-distributive-mul-add-product-Commutative-Ring : (x y z : type-product-Commutative-Ring) → Id ( mul-product-Commutative-Ring x (add-product-Commutative-Ring y z)) ( add-product-Commutative-Ring ( mul-product-Commutative-Ring x y) ( mul-product-Commutative-Ring x z)) left-distributive-mul-add-product-Commutative-Ring = left-distributive-mul-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) right-distributive-mul-add-product-Commutative-Ring : (x y z : type-product-Commutative-Ring) → Id ( mul-product-Commutative-Ring (add-product-Commutative-Ring x y) z) ( add-product-Commutative-Ring ( mul-product-Commutative-Ring x z) ( mul-product-Commutative-Ring y z)) right-distributive-mul-add-product-Commutative-Ring = right-distributive-mul-add-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) semigroup-product-Commutative-Ring : Semigroup (l1 ⊔ l2) semigroup-product-Commutative-Ring = semigroup-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) group-product-Commutative-Ring : Group (l1 ⊔ l2) group-product-Commutative-Ring = group-product-Ring ( ring-Commutative-Ring R1) ( ring-Commutative-Ring R2) ab-product-Commutative-Ring : Ab (l1 ⊔ l2) ab-product-Commutative-Ring = ab-product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) ring-product-Commutative-Ring : Ring (l1 ⊔ l2) ring-product-Commutative-Ring = product-Ring (ring-Commutative-Ring R1) (ring-Commutative-Ring R2) commutative-mul-product-Commutative-Ring : (x y : type-product-Commutative-Ring) → mul-product-Commutative-Ring x y = mul-product-Commutative-Ring y x commutative-mul-product-Commutative-Ring (x1 , x2) (y1 , y2) = eq-pair ( commutative-mul-Commutative-Ring R1 x1 y1) ( commutative-mul-Commutative-Ring R2 x2 y2) product-Commutative-Ring : Commutative-Ring (l1 ⊔ l2) pr1 product-Commutative-Ring = ring-product-Commutative-Ring pr2 product-Commutative-Ring = commutative-mul-product-Commutative-Ring
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-25. Victor Blanchi and Egbert Rijke. Towards Hasse-Weil species (#631).