The maximum of nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-09.
Last modified on 2025-10-17.
module elementary-number-theory.maximum-nonnegative-rational-numbers where
Imports
open import elementary-number-theory.inequality-nonnegative-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.maximum-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.identity-types
Idea
The maximum¶ of two nonnegative rational numbers is the greatest rational number of the two.
Definition
abstract is-nonnegative-max-ℚ : {p q : ℚ} → is-nonnegative-ℚ p → is-nonnegative-ℚ q → is-nonnegative-ℚ (max-ℚ p q) is-nonnegative-max-ℚ {p} {q} is-nonneg-p _ = is-nonnegative-leq-zero-ℚ ( transitive-leq-ℚ ( zero-ℚ) ( p) ( max-ℚ p q) ( leq-left-max-ℚ p q) ( leq-zero-is-nonnegative-ℚ is-nonneg-p)) max-ℚ⁰⁺ : ℚ⁰⁺ → ℚ⁰⁺ → ℚ⁰⁺ max-ℚ⁰⁺ (p , is-nonneg-p) q⁰⁺@(q , is-nonneg-q) = (max-ℚ p q , is-nonnegative-max-ℚ is-nonneg-p is-nonneg-q)
Properties
The binary maximum is associative
abstract associative-max-ℚ⁰⁺ : (x y z : ℚ⁰⁺) → max-ℚ⁰⁺ (max-ℚ⁰⁺ x y) z = max-ℚ⁰⁺ x (max-ℚ⁰⁺ y z) associative-max-ℚ⁰⁺ (x , _) (y , _) (z , _) = eq-ℚ⁰⁺ (associative-max-ℚ x y z)
The binary maximum is commutative
abstract commutative-max-ℚ⁰⁺ : (x y : ℚ⁰⁺) → max-ℚ⁰⁺ x y = max-ℚ⁰⁺ y x commutative-max-ℚ⁰⁺ (x , _) (y , _) = eq-ℚ⁰⁺ (commutative-max-ℚ x y)
The binary maximum is idempotent
abstract idempotent-max-ℚ⁰⁺ : (x : ℚ⁰⁺) → max-ℚ⁰⁺ x x = x idempotent-max-ℚ⁰⁺ (x , _) = eq-ℚ⁰⁺ (idempotent-max-ℚ x)
The binary maximum is an upper bound
abstract leq-left-max-ℚ⁰⁺ : (x y : ℚ⁰⁺) → leq-ℚ⁰⁺ x (max-ℚ⁰⁺ x y) leq-left-max-ℚ⁰⁺ _ _ = leq-left-max-ℚ _ _ leq-right-max-ℚ⁰⁺ : (x y : ℚ⁰⁺) → leq-ℚ⁰⁺ y (max-ℚ⁰⁺ x y) leq-right-max-ℚ⁰⁺ _ _ = leq-right-max-ℚ _ _
Recent changes
- 2025-10-17. Louis Wasserman. Reorganize signed arithmetic on rational numbers (#1582).
- 2025-10-14. Louis Wasserman. Multiplicative inverses of positive real numbers (#1569).
- 2025-10-09. Louis Wasserman. Multiplication of real numbers (#1384).