Minima and maxima on the rational numbers

Content created by Louis Wasserman.

Created on 2025-10-07.
Last modified on 2025-10-07.

module elementary-number-theory.minima-and-maxima-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.maximum-rational-numbers
open import elementary-number-theory.minimum-rational-numbers
open import elementary-number-theory.rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.identity-types

Idea

On this page, we outline basic relations between minima and maxima of rational numbers.

Lemmas

The negation of the minimum of rational numbers is the maximum of the negations

module _
  (p q : )
  where

  abstract
    neg-min-ℚ : neg-ℚ (min-ℚ p q)  max-ℚ (neg-ℚ p) (neg-ℚ q)
    neg-min-ℚ =
      rec-coproduct
        ( λ p≤q 
          ( ap neg-ℚ (left-leq-right-min-ℚ p q p≤q)) 
          ( inv (right-leq-left-max-ℚ _ _ (neg-leq-ℚ _ _ p≤q))))
        ( λ q≤p 
          ( ap neg-ℚ (right-leq-left-min-ℚ p q q≤p)) 
          ( inv (left-leq-right-max-ℚ _ _ (neg-leq-ℚ _ _ q≤p))))
        ( linear-leq-ℚ p q)

The negation of the maximum of rational numbers is the minimum of the negations

module _
  (p q : )
  where

  abstract
    neg-max-ℚ : neg-ℚ (max-ℚ p q)  min-ℚ (neg-ℚ p) (neg-ℚ q)
    neg-max-ℚ =
      rec-coproduct
        ( λ p≤q 
          ( ap neg-ℚ (left-leq-right-max-ℚ _ _ p≤q)) 
          ( inv (right-leq-left-min-ℚ _ _ (neg-leq-ℚ _ _ p≤q))))
        ( λ q≤p 
          ( ap neg-ℚ (right-leq-left-max-ℚ _ _ q≤p)) 
          ( inv (left-leq-right-min-ℚ _ _ (neg-leq-ℚ _ _ q≤p))))
        ( linear-leq-ℚ p q)

Recent changes