Minima and maxima on the rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-07.
module elementary-number-theory.minima-and-maxima-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.maximum-rational-numbers open import elementary-number-theory.minimum-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.identity-types
Idea
On this page, we outline basic relations between minima and maxima of rational numbers.
Lemmas
The negation of the minimum of rational numbers is the maximum of the negations
module _ (p q : ℚ) where abstract neg-min-ℚ : neg-ℚ (min-ℚ p q) = max-ℚ (neg-ℚ p) (neg-ℚ q) neg-min-ℚ = rec-coproduct ( λ p≤q → ( ap neg-ℚ (left-leq-right-min-ℚ p q p≤q)) ∙ ( inv (right-leq-left-max-ℚ _ _ (neg-leq-ℚ _ _ p≤q)))) ( λ q≤p → ( ap neg-ℚ (right-leq-left-min-ℚ p q q≤p)) ∙ ( inv (left-leq-right-max-ℚ _ _ (neg-leq-ℚ _ _ q≤p)))) ( linear-leq-ℚ p q)
The negation of the maximum of rational numbers is the minimum of the negations
module _ (p q : ℚ) where abstract neg-max-ℚ : neg-ℚ (max-ℚ p q) = min-ℚ (neg-ℚ p) (neg-ℚ q) neg-max-ℚ = rec-coproduct ( λ p≤q → ( ap neg-ℚ (left-leq-right-max-ℚ _ _ p≤q)) ∙ ( inv (right-leq-left-min-ℚ _ _ (neg-leq-ℚ _ _ p≤q)))) ( λ q≤p → ( ap neg-ℚ (right-leq-left-max-ℚ _ _ q≤p)) ∙ ( inv (left-leq-right-min-ℚ _ _ (neg-leq-ℚ _ _ q≤p)))) ( linear-leq-ℚ p q)
Recent changes
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).