The Archimedean property of the integers
Content created by Louis Wasserman.
Created on 2025-02-02.
Last modified on 2025-02-03.
module elementary-number-theory.archimedean-property-integers where
Imports
open import elementary-number-theory.archimedean-property-natural-numbers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.positive-and-negative-integers open import elementary-number-theory.positive-integers open import elementary-number-theory.strict-inequality-integers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.unit-type
Definition
The
Archimedean property¶
of the integers is that for any
positive integer x
and
integer y
, there is an n : ℕ
such that y < int-ℕ n *ℤ x
.
abstract archimedean-property-ℤ : (x y : ℤ) → is-positive-ℤ x → exists ℕ (λ n → le-ℤ-Prop y (int-ℕ n *ℤ x)) archimedean-property-ℤ x y pos-x with decide-is-negative-is-nonnegative-ℤ {y} ... | inl neg-y = intro-exists zero-ℕ (le-zero-is-negative-ℤ y neg-y) ... | inr nonneg-y = ind-Σ ( λ nx (nonzero-nx , nx=x) → elim-exists (∃ ℕ (λ n → le-ℤ-Prop y (int-ℕ n *ℤ x))) ( λ n ny<n*nx → intro-exists ( n) ( binary-tr ( le-ℤ) ( ap pr1 (is-section-nat-nonnegative-ℤ (y , nonneg-y))) ( inv (mul-int-ℕ n nx) ∙ ap (int-ℕ n *ℤ_) nx=x) ( le-natural-le-ℤ ( nat-nonnegative-ℤ (y , nonneg-y)) ( n *ℕ nx) ( ny<n*nx)))) ( archimedean-property-ℕ ( nx) ( nat-nonnegative-ℤ (y , nonneg-y)) nonzero-nx)) (pos-ℤ-to-ℕ x pos-x) where pos-ℤ-to-ℕ : (z : ℤ) → is-positive-ℤ z → Σ ℕ (λ n → is-nonzero-ℕ n × (int-ℕ n = z)) pos-ℤ-to-ℕ (inr (inr n)) H = succ-ℕ n , (λ ()) , refl
External links
- Archimedean property at Wikipedia
Recent changes
- 2025-02-03. Louis Wasserman. Existential quantification for the Archimedean property (#1262).
- 2025-02-02. Louis Wasserman. Archimedean property of
ℤ
(#1258).