Copointed endofunctors on precategories

Content created by Ben Connors.

Created on 2025-06-21.
Last modified on 2025-06-21.

module category-theory.copointed-endofunctors-precategories where
Imports
open import category-theory.functors-precategories
open import category-theory.natural-transformations-functors-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

Idea

An endofunctor F : C → C on a precategory C is said to be copointed if it comes equipped with a natural transformation F ⇒ id from F to the identity functor.

More explicitly, a copointing of an endofunctor F : C → C consists of a family of morphisms ε X : F X → X such that for each morphism f : X → Y in C the diagram

           ε X
      F X -----> X
       |         |
  F f  |         | f
       ∨         ∨
      F Y -----> Y
           ε Y

commutes.

Definitions

The structure of a copointing on an endofunctor on a precategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2) (T : functor-Precategory C C)
  where

  copointing-endofunctor-Precategory : UU (l1  l2)
  copointing-endofunctor-Precategory =
    natural-transformation-Precategory C C T (id-functor-Precategory C)

Copointed endofunctors on a precategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  copointed-endofunctor-Precategory : UU (l1  l2)
  copointed-endofunctor-Precategory =
    Σ (functor-Precategory C C) (copointing-endofunctor-Precategory C)

  module _
    (F : copointed-endofunctor-Precategory)
    where

    functor-copointed-endofunctor-Precategory :
      functor-Precategory C C
    functor-copointed-endofunctor-Precategory =
      pr1 F

    obj-copointed-endofunctor-Precategory :
      obj-Precategory C  obj-Precategory C
    obj-copointed-endofunctor-Precategory =
      obj-functor-Precategory C C functor-copointed-endofunctor-Precategory

    hom-copointed-endofunctor-Precategory :
      {X Y : obj-Precategory C} 
      hom-Precategory C X Y 
      hom-Precategory C
        ( obj-copointed-endofunctor-Precategory X)
        ( obj-copointed-endofunctor-Precategory Y)
    hom-copointed-endofunctor-Precategory =
      hom-functor-Precategory C C functor-copointed-endofunctor-Precategory

    preserves-id-copointed-endofunctor-Precategory :
      (X : obj-Precategory C) 
      hom-copointed-endofunctor-Precategory (id-hom-Precategory C {X}) 
      id-hom-Precategory C
    preserves-id-copointed-endofunctor-Precategory =
      preserves-id-functor-Precategory C C
        ( functor-copointed-endofunctor-Precategory)

    preserves-comp-copointed-endofunctor-Precategory :
      {X Y Z : obj-Precategory C}
      (g : hom-Precategory C Y Z) (f : hom-Precategory C X Y) 
      hom-copointed-endofunctor-Precategory
        ( comp-hom-Precategory C g f) 
      comp-hom-Precategory C
        ( hom-copointed-endofunctor-Precategory g)
        ( hom-copointed-endofunctor-Precategory f)
    preserves-comp-copointed-endofunctor-Precategory =
      preserves-comp-functor-Precategory C C
        ( functor-copointed-endofunctor-Precategory)

    copointing-copointed-endofunctor-Precategory :
      natural-transformation-Precategory C C
        ( functor-copointed-endofunctor-Precategory)
        ( id-functor-Precategory C)
    copointing-copointed-endofunctor-Precategory = pr2 F

    hom-family-copointing-copointed-endofunctor-Precategory :
      hom-family-functor-Precategory C C
        ( functor-copointed-endofunctor-Precategory)
        ( id-functor-Precategory C)
    hom-family-copointing-copointed-endofunctor-Precategory =
      hom-family-natural-transformation-Precategory C C
        ( functor-copointed-endofunctor-Precategory)
        ( id-functor-Precategory C)
        ( copointing-copointed-endofunctor-Precategory)

    naturality-copointing-copointed-endofunctor-Precategory :
      is-natural-transformation-Precategory C C
        ( functor-copointed-endofunctor-Precategory)
        ( id-functor-Precategory C)
        ( hom-family-copointing-copointed-endofunctor-Precategory)
    naturality-copointing-copointed-endofunctor-Precategory =
      naturality-natural-transformation-Precategory C C
        ( functor-copointed-endofunctor-Precategory)
        ( id-functor-Precategory C)
        ( copointing-copointed-endofunctor-Precategory)

See also

Recent changes