Copointed endofunctors on precategories
Content created by Ben Connors.
Created on 2025-06-21.
Last modified on 2025-06-21.
module category-theory.copointed-endofunctors-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.natural-transformations-functors-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels
Idea
An endofunctor F : C → C
on a
precategory C
is said to be
copointed¶
if it comes equipped with a
natural transformation
F ⇒ id
from F
to the identity
functor.
More explicitly, a
copointing¶
of an endofunctor F : C → C
consists of a family of morphisms ε X : F X → X
such that for each morphism f : X → Y
in C
the diagram
ε X
F X -----> X
| |
F f | | f
∨ ∨
F Y -----> Y
ε Y
Definitions
The structure of a copointing on an endofunctor on a precategory
module _ {l1 l2 : Level} (C : Precategory l1 l2) (T : functor-Precategory C C) where copointing-endofunctor-Precategory : UU (l1 ⊔ l2) copointing-endofunctor-Precategory = natural-transformation-Precategory C C T (id-functor-Precategory C)
Copointed endofunctors on a precategory
module _ {l1 l2 : Level} (C : Precategory l1 l2) where copointed-endofunctor-Precategory : UU (l1 ⊔ l2) copointed-endofunctor-Precategory = Σ (functor-Precategory C C) (copointing-endofunctor-Precategory C) module _ (F : copointed-endofunctor-Precategory) where functor-copointed-endofunctor-Precategory : functor-Precategory C C functor-copointed-endofunctor-Precategory = pr1 F obj-copointed-endofunctor-Precategory : obj-Precategory C → obj-Precategory C obj-copointed-endofunctor-Precategory = obj-functor-Precategory C C functor-copointed-endofunctor-Precategory hom-copointed-endofunctor-Precategory : {X Y : obj-Precategory C} → hom-Precategory C X Y → hom-Precategory C ( obj-copointed-endofunctor-Precategory X) ( obj-copointed-endofunctor-Precategory Y) hom-copointed-endofunctor-Precategory = hom-functor-Precategory C C functor-copointed-endofunctor-Precategory preserves-id-copointed-endofunctor-Precategory : (X : obj-Precategory C) → hom-copointed-endofunctor-Precategory (id-hom-Precategory C {X}) = id-hom-Precategory C preserves-id-copointed-endofunctor-Precategory = preserves-id-functor-Precategory C C ( functor-copointed-endofunctor-Precategory) preserves-comp-copointed-endofunctor-Precategory : {X Y Z : obj-Precategory C} (g : hom-Precategory C Y Z) (f : hom-Precategory C X Y) → hom-copointed-endofunctor-Precategory ( comp-hom-Precategory C g f) = comp-hom-Precategory C ( hom-copointed-endofunctor-Precategory g) ( hom-copointed-endofunctor-Precategory f) preserves-comp-copointed-endofunctor-Precategory = preserves-comp-functor-Precategory C C ( functor-copointed-endofunctor-Precategory) copointing-copointed-endofunctor-Precategory : natural-transformation-Precategory C C ( functor-copointed-endofunctor-Precategory) ( id-functor-Precategory C) copointing-copointed-endofunctor-Precategory = pr2 F hom-family-copointing-copointed-endofunctor-Precategory : hom-family-functor-Precategory C C ( functor-copointed-endofunctor-Precategory) ( id-functor-Precategory C) hom-family-copointing-copointed-endofunctor-Precategory = hom-family-natural-transformation-Precategory C C ( functor-copointed-endofunctor-Precategory) ( id-functor-Precategory C) ( copointing-copointed-endofunctor-Precategory) naturality-copointing-copointed-endofunctor-Precategory : is-natural-transformation-Precategory C C ( functor-copointed-endofunctor-Precategory) ( id-functor-Precategory C) ( hom-family-copointing-copointed-endofunctor-Precategory) naturality-copointing-copointed-endofunctor-Precategory = naturality-natural-transformation-Precategory C C ( functor-copointed-endofunctor-Precategory) ( id-functor-Precategory C) ( copointing-copointed-endofunctor-Precategory)
See also
- Pointed endofunctors for the dual concept.
Recent changes
- 2025-06-21. Ben Connors. Dualize limits, right Kan extensions, and monads (#1442).