Hypergraphs
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-07-15.
Last modified on 2024-10-16.
module graph-theory.hypergraphs where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation.unordered-tuples
Idea
A k
-hypergraph consists of a type V
of vertices and a family E
of
types indexed by the unordered k
-tuples of
vertices.
Definition
Hypergraph : (l1 l2 : Level) (k : ℕ) → UU (lsuc l1 ⊔ lsuc l2) Hypergraph l1 l2 k = Σ (UU l1) (λ V → unordered-tuple k V → UU l2) module _ {l1 l2 : Level} {k : ℕ} (G : Hypergraph l1 l2 k) where vertex-Hypergraph : UU l1 vertex-Hypergraph = pr1 G unordered-tuple-vertices-Hypergraph : UU (lsuc lzero ⊔ l1) unordered-tuple-vertices-Hypergraph = unordered-tuple k vertex-Hypergraph simplex-Hypergraph : unordered-tuple-vertices-Hypergraph → UU l2 simplex-Hypergraph = pr2 G
External links
- Hypergraph at Lab
- Hypergraph on Wikidata
- Hypergraph at Wikipedia
- Hypergraph at Wolfram MathWorld
Recent changes
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-10-13. Egbert Rijke. Fix links to wikidata to the recommended links; add concept tags at end of file for testing purposes (#837).
- 2023-10-12. Egbert Rijke. Creating internal and external links in Graph Theory (#832).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).