Rigid objects in a precategory
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-09.
module category-theory.rigid-objects-precategories where
Imports
open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
A rigid object in a precategory is an object whose automorphism group is trivial.
Definitions
The predicate of being rigid
module _ {l1 l2 : Level} (C : Precategory l1 l2) (x : obj-Precategory C) where is-rigid-obj-prop-Precategory : Prop l2 is-rigid-obj-prop-Precategory = is-contr-Prop (iso-Precategory C x x) is-rigid-obj-Precategory : UU l2 is-rigid-obj-Precategory = type-Prop is-rigid-obj-prop-Precategory is-prop-is-rigid-obj-Precategory : is-prop is-rigid-obj-Precategory is-prop-is-rigid-obj-Precategory = is-prop-type-Prop is-rigid-obj-prop-Precategory
The type of rigid objects in a precategory
rigid-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2) rigid-obj-Precategory C = Σ (obj-Precategory C) (is-rigid-obj-Precategory C) module _ {l1 l2 : Level} (C : Precategory l1 l2) where obj-rigid-obj-Precategory : rigid-obj-Precategory C → obj-Precategory C obj-rigid-obj-Precategory = pr1 is-rigid-rigid-obj-Precategory : (x : rigid-obj-Precategory C) → is-rigid-obj-Precategory C (obj-rigid-obj-Precategory x) is-rigid-rigid-obj-Precategory = pr2
External links
- rigid object at Lab
Recent changes
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).