The descent property of the circle

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Vojtěch Štěpančík and Victor Blanchi.

Created on 2023-02-23.
Last modified on 2024-02-06.

module synthetic-homotopy-theory.descent-circle where
Imports
open import foundation.automorphisms
open import foundation.commuting-squares-of-maps
open import foundation.commuting-triangles-of-maps
open import foundation.contractible-maps
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.torsorial-type-families
open import foundation.transport-along-identifications
open import foundation.univalence
open import foundation.universe-levels

open import structured-types.equivalences-types-equipped-with-automorphisms
open import structured-types.types-equipped-with-automorphisms

open import synthetic-homotopy-theory.free-loops
open import synthetic-homotopy-theory.universal-property-circle

Idea

The descent property of the circle uniquely characterizes type families over the circle.

Definitions

Descent data for the circle

By the universal property of the circle and univalence, a type family A : 𝕊¹ → U over the circle is equivalent to a type X : U equipped with an automorphism e : X ≃ X, in a way made precise in further sections of this file. The pair (X, e) is called descent data for the circle.

descent-data-circle :
  ( l1 : Level)  UU (lsuc l1)
descent-data-circle = Type-With-Automorphism

module _
  { l1 : Level} (P : descent-data-circle l1)
  where

  type-descent-data-circle : UU l1
  type-descent-data-circle = type-Type-With-Automorphism P

  aut-descent-data-circle : Aut type-descent-data-circle
  aut-descent-data-circle = automorphism-Type-With-Automorphism P

  map-descent-data-circle : type-descent-data-circle  type-descent-data-circle
  map-descent-data-circle = map-Type-With-Automorphism P

Canonical descent data for a family over the circle

A type family over the circle gives rise to its canonical descent data, obtained by evaluation at base and transporting along loop.

descent-data-family-circle :
  { l1 l2 : Level} {S : UU l1} (l : free-loop S) 
  ( S  UU l2)  descent-data-circle l2
pr1 (descent-data-family-circle l A) = A (base-free-loop l)
pr2 (descent-data-family-circle l A) = equiv-tr A (loop-free-loop l)

The identity type of descent data for the circle

An equivalence between (X, e) and (Y, f) is an equivalence between X and Y which commutes with the automorphisms.

equiv-descent-data-circle :
  { l1 l2 : Level}  descent-data-circle l1  descent-data-circle l2 
  UU (l1  l2)
equiv-descent-data-circle = equiv-Type-With-Automorphism

module _
  { l1 l2 : Level} (P : descent-data-circle l1) (Q : descent-data-circle l2)
  ( α : equiv-descent-data-circle P Q)
  where

  equiv-equiv-descent-data-circle :
    type-descent-data-circle P  type-descent-data-circle Q
  equiv-equiv-descent-data-circle =
    equiv-equiv-Type-With-Automorphism P Q α

  map-equiv-descent-data-circle :
    type-descent-data-circle P  type-descent-data-circle Q
  map-equiv-descent-data-circle =
    map-equiv-Type-With-Automorphism P Q α

  coherence-square-equiv-descent-data-circle :
    coherence-square-maps
      ( map-equiv-descent-data-circle)
      ( map-descent-data-circle P)
      ( map-descent-data-circle Q)
      ( map-equiv-descent-data-circle)
  coherence-square-equiv-descent-data-circle =
    coherence-square-equiv-Type-With-Automorphism P Q α

A family over the circle equipped with corresponding descent data

A family for descent data (X, e) is a family over the circle, along with a proof that (X, e) is equivalent to the canonical descent data of the family.

Descent data for a family A : 𝕊¹ → U is descent data with a proof that it's equivalent to the canonical descent data of A.

A family with descent data is a family A : 𝕊¹ → U over the circle, equipped with descent data (X, e), and a proof of their equivalence. This can be described as a diagram

      α
  X -----> A base
  |         |
 e|         | tr A loop
  v         v
  X -----> A base
      α

Ideally, every section characterizing descent data of a particular type family should include an element of type family-with-descent-data-circle, whose type family is the one being described.

Note on naming: a -for- in a name indicates that the particular entry contains a proof that it's somehow equivalent to the structure it's "for".

module _
  { l1 : Level} {S : UU l1} (l : free-loop S)
  where

  family-for-descent-data-circle :
    { l2 : Level}  descent-data-circle l2  UU (l1  lsuc l2)
  family-for-descent-data-circle {l2} P =
    Σ ( S  UU l2)
      ( λ A 
        equiv-descent-data-circle
          ( P)
          ( descent-data-family-circle l A))

  descent-data-circle-for-family :
    { l2 : Level}  (S  UU l2)  UU (lsuc l2)
  descent-data-circle-for-family {l2} A =
    Σ ( descent-data-circle l2)
      ( λ P 
        equiv-descent-data-circle
          ( P)
          ( descent-data-family-circle l A))

  family-with-descent-data-circle :
    ( l2 : Level)  UU (l1  lsuc l2)
  family-with-descent-data-circle l2 =
    Σ ( S  UU l2) descent-data-circle-for-family

module _
  { l1 l2 : Level} {S : UU l1} {l : free-loop S}
  ( A : family-with-descent-data-circle l l2)
  where

  family-family-with-descent-data-circle : S  UU l2
  family-family-with-descent-data-circle = pr1 A

  descent-data-for-family-with-descent-data-circle :
    descent-data-circle-for-family l
      family-family-with-descent-data-circle
  descent-data-for-family-with-descent-data-circle = pr2 A

  descent-data-family-with-descent-data-circle : descent-data-circle l2
  descent-data-family-with-descent-data-circle =
    pr1 descent-data-for-family-with-descent-data-circle

  type-family-with-descent-data-circle : UU l2
  type-family-with-descent-data-circle =
    type-descent-data-circle descent-data-family-with-descent-data-circle

  aut-family-with-descent-data-circle : Aut type-family-with-descent-data-circle
  aut-family-with-descent-data-circle =
    aut-descent-data-circle descent-data-family-with-descent-data-circle

  map-aut-family-with-descent-data-circle :
    type-family-with-descent-data-circle  type-family-with-descent-data-circle
  map-aut-family-with-descent-data-circle =
    map-descent-data-circle descent-data-family-with-descent-data-circle

  eq-family-with-descent-data-circle :
    equiv-descent-data-circle
      ( descent-data-family-with-descent-data-circle)
      ( descent-data-family-circle l family-family-with-descent-data-circle)
  eq-family-with-descent-data-circle =
    pr2 descent-data-for-family-with-descent-data-circle

  equiv-family-with-descent-data-circle :
    type-family-with-descent-data-circle 
    family-family-with-descent-data-circle (base-free-loop l)
  equiv-family-with-descent-data-circle =
    equiv-equiv-descent-data-circle
      ( descent-data-family-with-descent-data-circle)
      ( descent-data-family-circle l family-family-with-descent-data-circle)
      ( eq-family-with-descent-data-circle)

  map-equiv-family-with-descent-data-circle :
    type-family-with-descent-data-circle 
    family-family-with-descent-data-circle (base-free-loop l)
  map-equiv-family-with-descent-data-circle =
    map-equiv equiv-family-with-descent-data-circle

  coherence-square-family-with-descent-data-circle :
    coherence-square-maps
      ( map-equiv-family-with-descent-data-circle)
      ( map-aut-family-with-descent-data-circle)
      ( tr family-family-with-descent-data-circle (loop-free-loop l))
      ( map-equiv-family-with-descent-data-circle)
  coherence-square-family-with-descent-data-circle =
    coherence-square-equiv-descent-data-circle
      ( descent-data-family-with-descent-data-circle)
      ( descent-data-family-circle l family-family-with-descent-data-circle)
      ( eq-family-with-descent-data-circle)

  family-for-family-with-descent-data-circle :
    family-for-descent-data-circle l
      descent-data-family-with-descent-data-circle
  pr1 family-for-family-with-descent-data-circle =
    family-family-with-descent-data-circle
  pr2 family-for-family-with-descent-data-circle =
    eq-family-with-descent-data-circle

Properties

Characterization of the identity type of descent data for the circle

id-equiv-descent-data-circle :
  { l1 : Level} (P : descent-data-circle l1) 
  equiv-descent-data-circle P P
id-equiv-descent-data-circle =
  id-equiv-Type-With-Automorphism

equiv-eq-descent-data-circle :
  { l1 : Level} (P Q : descent-data-circle l1) 
  P  Q  equiv-descent-data-circle P Q
equiv-eq-descent-data-circle =
  equiv-eq-Type-With-Automorphism

is-torsorial-equiv-descent-data-circle :
  { l1 : Level} (P : descent-data-circle l1) 
  is-torsorial (equiv-descent-data-circle P)
is-torsorial-equiv-descent-data-circle =
  is-torsorial-equiv-Type-With-Automorphism

is-equiv-equiv-eq-descent-data-circle :
  { l1 : Level} (P Q : descent-data-circle l1) 
  is-equiv (equiv-eq-descent-data-circle P Q)
is-equiv-equiv-eq-descent-data-circle =
  is-equiv-equiv-eq-Type-With-Automorphism

eq-equiv-descent-data-circle :
  { l1 : Level} (P Q : descent-data-circle l1) 
  equiv-descent-data-circle P Q  P  Q
eq-equiv-descent-data-circle =
  eq-equiv-Type-With-Automorphism

Alternative definition of equality of descent data as homomorphisms which are equivalences

module _
  { l1 l2 : Level}
  ( P : descent-data-circle l1)
  ( Q : descent-data-circle l2)
  where

  equiv-descent-data-circle' : UU (l1  l2)
  equiv-descent-data-circle' = equiv-Type-With-Automorphism' P Q

  compute-equiv-descent-data-circle :
    equiv-descent-data-circle'  equiv-descent-data-circle P Q
  compute-equiv-descent-data-circle = compute-equiv-Type-With-Automorphism P Q

Uniqueness of descent data characterizing a type family over the circle

Given a type X and an automorphism e : X ≃ X, there is a unique type family 𝓓(X, e) : 𝕊¹ → U for which (X, e) is descent data.

comparison-descent-data-circle :
  ( l1 : Level)  free-loop (UU l1)  descent-data-circle l1
comparison-descent-data-circle l1 = tot  Y  equiv-eq)

is-equiv-comparison-descent-data-circle :
  ( l1 : Level)  is-equiv (comparison-descent-data-circle l1)
is-equiv-comparison-descent-data-circle l1 =
  is-equiv-tot-is-fiberwise-equiv  Y  univalence Y Y)

module _
  { l1 l2 : Level} {S : UU l1} (l : free-loop S)
  where

  triangle-comparison-descent-data-circle :
    coherence-triangle-maps
      ( descent-data-family-circle l)
      ( comparison-descent-data-circle l2)
      ( ev-free-loop l (UU l2))
  triangle-comparison-descent-data-circle A =
    eq-equiv-descent-data-circle
      ( descent-data-family-circle l A)
      ( comparison-descent-data-circle l2 (ev-free-loop l (UU l2) A))
      ( id-equiv , (htpy-eq (inv (compute-map-eq-ap (loop-free-loop l)))))

  is-equiv-descent-data-family-circle-universal-property-circle :
    ( up-circle : universal-property-circle (lsuc l2) l) 
    is-equiv (descent-data-family-circle l)
  is-equiv-descent-data-family-circle-universal-property-circle up-circle =
    is-equiv-left-map-triangle
      ( descent-data-family-circle l)
      ( comparison-descent-data-circle l2)
      ( ev-free-loop l (UU l2))
      ( triangle-comparison-descent-data-circle)
      ( up-circle (UU l2))
      ( is-equiv-comparison-descent-data-circle l2)

unique-family-property-circle :
  { l1 : Level} (l2 : Level) {S : UU l1} (l : free-loop S) 
  UU (l1  lsuc l2)
unique-family-property-circle l2 {S} l =
  ( Q : descent-data-circle l2)  is-contr (family-for-descent-data-circle l Q)

module _
  { l1 l2 : Level} {S : UU l1} (l : free-loop S)
  ( up-circle : universal-property-circle (lsuc l2) l)
  where

  unique-family-property-universal-property-circle :
    unique-family-property-circle l2 l
  unique-family-property-universal-property-circle Q =
    is-contr-is-equiv'
      ( fiber (descent-data-family-circle l) Q)
      ( tot
        ( λ P 
          equiv-eq-descent-data-circle Q (descent-data-family-circle l P) 
          inv))
      ( is-equiv-tot-is-fiberwise-equiv
        ( λ P 
          is-equiv-comp _ _
            ( is-equiv-inv _ _)
            ( is-equiv-equiv-eq-descent-data-circle
              ( Q)
              ( descent-data-family-circle l P))))
      ( is-contr-map-is-equiv
        ( is-equiv-descent-data-family-circle-universal-property-circle
          ( l)
          ( up-circle))
        ( Q))

  family-for-descent-data-circle-descent-data :
    ( P : descent-data-circle l2) 
    family-for-descent-data-circle l P
  family-for-descent-data-circle-descent-data P =
    center (unique-family-property-universal-property-circle P)

  family-with-descent-data-circle-descent-data :
    ( P : descent-data-circle l2) 
    ( family-with-descent-data-circle l l2)
  pr1 (family-with-descent-data-circle-descent-data P) =
    pr1 (family-for-descent-data-circle-descent-data P)
  pr1 (pr2 (family-with-descent-data-circle-descent-data P)) = P
  pr2 (pr2 (family-with-descent-data-circle-descent-data P)) =
    pr2 (family-for-descent-data-circle-descent-data P)

Recent changes