The additive group of rational numbers
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-04-25.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.additive-group-of-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups
Idea
The type of rational numbers
equipped with addition
is a commutative group with unit zero-ℚ
and
inverse given byneg-ℚ
.
Definitions
The additive abelian group of rational numbers
semigroup-add-ℚ : Semigroup lzero pr1 semigroup-add-ℚ = ℚ-Set pr1 (pr2 semigroup-add-ℚ) = add-ℚ pr2 (pr2 semigroup-add-ℚ) = associative-add-ℚ is-unital-add-ℚ : is-unital add-ℚ pr1 is-unital-add-ℚ = zero-ℚ pr1 (pr2 is-unital-add-ℚ) = left-unit-law-add-ℚ pr2 (pr2 is-unital-add-ℚ) = right-unit-law-add-ℚ monoid-add-ℚ : Monoid lzero pr1 monoid-add-ℚ = semigroup-add-ℚ pr2 monoid-add-ℚ = is-unital-add-ℚ group-add-ℚ : Group lzero pr1 group-add-ℚ = semigroup-add-ℚ pr1 (pr2 group-add-ℚ) = is-unital-add-ℚ pr1 (pr2 (pr2 group-add-ℚ)) = neg-ℚ pr1 (pr2 (pr2 (pr2 group-add-ℚ))) = left-inverse-law-add-ℚ pr2 (pr2 (pr2 (pr2 group-add-ℚ))) = right-inverse-law-add-ℚ
Properties
Tha additive group of rational numbers is commutative
abelian-group-add-ℚ : Ab lzero pr1 abelian-group-add-ℚ = group-add-ℚ pr2 abelian-group-add-ℚ = commutative-add-ℚ
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).