The universal cover of the circle
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Vojtěch Štěpančík and Elisabeth Stenholm.
Created on 2022-03-02.
Last modified on 2024-06-04.
{-# OPTIONS --lossy-unification #-} module synthetic-homotopy-theory.universal-cover-circle where
Imports
open import elementary-number-theory.integers open import elementary-number-theory.nonzero-integers open import elementary-number-theory.universal-property-integers open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.dependent-identifications open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.precomposition-dependent-functions open import foundation.raising-universe-levels open import foundation.sets open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universe-levels open import synthetic-homotopy-theory.descent-circle open import synthetic-homotopy-theory.free-loops open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.universal-property-circle
12.2 The universal cover of the circle
We show that if a type with a free loop satisfies the induction principle of the circle with respect to any universe level, then it satisfies the induction principle with respect to the zeroth universe level.
functor-free-dependent-loop : { l1 l2 l3 : Level} {X : UU l1} (l : free-loop X) { P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) → free-dependent-loop l P → free-dependent-loop l Q functor-free-dependent-loop l {P} {Q} f = map-Σ ( λ q → dependent-identification Q (loop-free-loop l) q q) ( f (base-free-loop l)) ( λ p α → inv (preserves-tr f (loop-free-loop l) p) ∙ ( ap (f (base-free-loop l)) α)) coherence-square-functor-free-dependent-loop : { l1 l2 l3 : Level} {X : UU l1} {P : X → UU l2} {Q : X → UU l3} ( f : (x : X) → P x → Q x) {x y : X} (α : Id x y) ( h : (x : X) → P x) → Id ( inv ( preserves-tr f α (h x)) ∙ ( ap (f y) (apd h α))) ( apd (map-Π f h) α) coherence-square-functor-free-dependent-loop f refl h = refl square-functor-free-dependent-loop : { l1 l2 l3 : Level} {X : UU l1} (l : free-loop X) { P : X → UU l2} {Q : X → UU l3} (f : (x : X) → P x → Q x) → ( (functor-free-dependent-loop l f) ∘ (ev-free-loop-Π l P)) ~ ( (ev-free-loop-Π l Q) ∘ (map-Π f)) square-functor-free-dependent-loop (pair x l) {P} {Q} f h = eq-Eq-free-dependent-loop (pair x l) Q ( functor-free-dependent-loop (pair x l) f ( ev-free-loop-Π (pair x l) P h)) ( ev-free-loop-Π (pair x l) Q (map-Π f h)) ( pair refl ( right-unit ∙ (coherence-square-functor-free-dependent-loop f l h))) abstract is-equiv-functor-free-dependent-loop-is-fiberwise-equiv : { l1 l2 l3 : Level} {X : UU l1} (l : free-loop X) { P : X → UU l2} {Q : X → UU l3} {f : (x : X) → P x → Q x} ( is-equiv-f : (x : X) → is-equiv (f x)) → is-equiv (functor-free-dependent-loop l f) is-equiv-functor-free-dependent-loop-is-fiberwise-equiv (pair x l) {P} {Q} {f} is-equiv-f = is-equiv-map-Σ ( λ q₀ → Id (tr Q l q₀) q₀) ( is-equiv-f x) ( λ p₀ → is-equiv-comp ( concat ( inv (preserves-tr f l p₀)) ( f x p₀)) ( ap (f x)) ( is-emb-is-equiv (is-equiv-f x) (tr P l p₀) p₀) ( is-equiv-concat ( inv (preserves-tr f l p₀)) ( f x p₀)))
The universal cover
module _ { l1 : Level} {S : UU l1} (l : free-loop S) where descent-data-universal-cover-circle : descent-data-circle lzero pr1 descent-data-universal-cover-circle = ℤ pr2 descent-data-universal-cover-circle = equiv-succ-ℤ module _ ( dup-circle : dependent-universal-property-circle l) where abstract universal-cover-family-with-descent-data-circle : family-with-descent-data-circle l lzero universal-cover-family-with-descent-data-circle = family-with-descent-data-circle-descent-data l ( universal-property-dependent-universal-property-circle l dup-circle) ( descent-data-universal-cover-circle) universal-cover-circle : S → UU lzero universal-cover-circle = family-family-with-descent-data-circle universal-cover-family-with-descent-data-circle compute-fiber-universal-cover-circle : ℤ ≃ universal-cover-circle (base-free-loop l) compute-fiber-universal-cover-circle = equiv-family-with-descent-data-circle universal-cover-family-with-descent-data-circle compute-tr-universal-cover-circle : coherence-square-maps ( map-equiv compute-fiber-universal-cover-circle) ( succ-ℤ) ( tr universal-cover-circle (loop-free-loop l)) ( map-equiv compute-fiber-universal-cover-circle) compute-tr-universal-cover-circle = coherence-square-family-with-descent-data-circle universal-cover-family-with-descent-data-circle map-compute-fiber-universal-cover-circle : ℤ → universal-cover-circle (base-free-loop l) map-compute-fiber-universal-cover-circle = map-equiv compute-fiber-universal-cover-circle
The universal cover of the circle is a family of sets
abstract is-set-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( x : X) → is-set (universal-cover-circle l dup-circle x) is-set-universal-cover-circle l dup-circle = is-connected-circle' l ( dup-circle) ( λ x → is-set (universal-cover-circle l dup-circle x)) ( λ x → is-prop-is-set (universal-cover-circle l dup-circle x)) ( is-trunc-is-equiv' zero-𝕋 ℤ ( map-equiv (compute-fiber-universal-cover-circle l dup-circle)) ( is-equiv-map-equiv ( compute-fiber-universal-cover-circle l dup-circle)) ( is-set-ℤ))
Contractibility of a general total space
contraction-total-space : { l1 l2 : Level} {A : UU l1} {B : A → UU l2} (center : Σ A B) → ( x : A) → UU (l1 ⊔ l2) contraction-total-space {B = B} center x = ( y : B x) → Id center (pair x y) path-total-path-fiber : { l1 l2 : Level} {A : UU l1} (B : A → UU l2) (x : A) → { y y' : B x} (q : Id y' y) → Id {A = Σ A B} (pair x y) (pair x y') path-total-path-fiber B x q = eq-pair-eq-fiber (inv q) tr-path-total-path-fiber : { l1 l2 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) (x : A) → { y y' : B x} (q : Id y' y) (α : Id c (pair x y')) → Id ( tr (λ z → Id c (pair x z)) q α) ( α ∙ (inv (path-total-path-fiber B x q))) tr-path-total-path-fiber c x refl α = inv right-unit segment-Σ : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} → { x x' : A} (p : Id x x') { F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x') ( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) (y : F) → Id (pair x (map-equiv e y)) (pair x' (map-equiv e' (map-equiv f y))) segment-Σ refl f e e' H y = path-total-path-fiber _ _ (H y) contraction-total-space' : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → ( x : A) → {F : UU l3} (e : F ≃ B x) → UU (l1 ⊔ l2 ⊔ l3) contraction-total-space' c x {F} e = ( y : F) → Id c (pair x (map-equiv e y)) equiv-tr-contraction-total-space' : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → { x x' : A} (p : Id x x') → { F : UU l3} {F' : UU l4} (f : F ≃ F') (e : F ≃ B x) (e' : F' ≃ B x') → ( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) → ( contraction-total-space' c x' e') ≃ (contraction-total-space' c x e) equiv-tr-contraction-total-space' c p f e e' H = ( equiv-Π-equiv-family ( λ y → equiv-concat' c (inv (segment-Σ p f e e' H y)))) ∘e ( equiv-precomp-Π f _) equiv-contraction-total-space : { l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → ( x : A) → {F : UU l3} (e : F ≃ B x) → ( contraction-total-space c x) ≃ (contraction-total-space' c x e) equiv-contraction-total-space c x e = equiv-precomp-Π e (λ y → Id c (pair x y)) tr-path-total-tr-coherence : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) (x : A) → { F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x) ( H : ((map-equiv e') ∘ (map-equiv f)) ~ (map-equiv e)) → (y : F) (α : Id c (pair x (map-equiv e' (map-equiv f y)))) → Id ( tr (λ z → Id c (pair x z)) (H y) α) ( α ∙ (inv (segment-Σ refl f e e' H y))) tr-path-total-tr-coherence c x f e e' H y α = tr-path-total-path-fiber c x (H y) α square-tr-contraction-total-space : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → { x x' : A} (p : Id x x') { F : UU l3} {F' : UU l4} (f : F ≃ F') (e : F ≃ B x) (e' : F' ≃ B x') ( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) (h : contraction-total-space c x) → ( map-equiv ( ( equiv-tr-contraction-total-space' c p f e e' H) ∘e ( ( equiv-contraction-total-space c x' e') ∘e ( equiv-tr (contraction-total-space c) p))) ( h)) ~ ( map-equiv (equiv-contraction-total-space c x e) h) square-tr-contraction-total-space c refl f e e' H h y = ( inv (tr-path-total-tr-coherence c _ f e e' H y ( h (map-equiv e' (map-equiv f y))))) ∙ ( apd h (H y)) dependent-identification-contraction-total-space' : {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → {x x' : A} (p : Id x x') → {F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x') (H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) → (h : (y : F) → Id c (pair x (map-equiv e y))) → (h' : (y' : F') → Id c (pair x' (map-equiv e' y'))) → UU (l1 ⊔ l2 ⊔ l3) dependent-identification-contraction-total-space' c {x} {x'} p {F} {F'} f e e' H h h' = ( map-Π ( λ y → concat' c (segment-Σ p f e e' H y)) h) ~ ( precomp-Π ( map-equiv f) ( λ y' → Id c (pair x' (map-equiv e' y'))) ( h')) map-dependent-identification-contraction-total-space' : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → { x x' : A} (p : Id x x') → { F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x') ( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) → ( h : contraction-total-space' c x e) → ( h' : contraction-total-space' c x' e') → ( dependent-identification-contraction-total-space' c p f e e' H h h') → ( dependent-identification (contraction-total-space c) p ( map-inv-equiv (equiv-contraction-total-space c x e) h) ( map-inv-equiv (equiv-contraction-total-space c x' e') h')) map-dependent-identification-contraction-total-space' c {x} {.x} refl f e e' H h h' α = map-inv-equiv ( equiv-ap ( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e ( equiv-contraction-total-space c x e')) ( map-inv-equiv (equiv-contraction-total-space c x e) h) ( map-inv-equiv (equiv-contraction-total-space c x e') h')) ( ( ( eq-htpy ( square-tr-contraction-total-space c refl f e e' H ( map-inv-equiv (equiv-contraction-total-space c x e) h))) ∙ ( is-section-map-inv-is-equiv ( is-equiv-map-equiv (equiv-contraction-total-space c x e)) ( h))) ∙ ( ( eq-htpy ( right-transpose-htpy-concat h ( segment-Σ refl f e e' H) ( precomp-Π ( map-equiv f) ( λ y' → Id c (pair x (map-equiv e' y'))) ( h')) ( α))) ∙ ( inv ( ap ( map-equiv (equiv-tr-contraction-total-space' c refl f e e' H)) ( is-section-map-inv-is-equiv ( is-equiv-map-equiv ( equiv-precomp-Π e' (λ y' → Id c (pair x y')))) ( h')))))) equiv-dependent-identification-contraction-total-space' : { l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (c : Σ A B) → { x x' : A} (p : Id x x') → { F : UU l3} {F' : UU l4} (f : F ≃ F') ( e : F ≃ B x) (e' : F' ≃ B x') ( H : ((map-equiv e') ∘ (map-equiv f)) ~ ((tr B p) ∘ (map-equiv e))) → ( h : contraction-total-space' c x e) → ( h' : contraction-total-space' c x' e') → ( dependent-identification (contraction-total-space c) p ( map-inv-equiv (equiv-contraction-total-space c x e) h) ( map-inv-equiv (equiv-contraction-total-space c x' e') h')) ≃ ( dependent-identification-contraction-total-space' c p f e e' H h h') equiv-dependent-identification-contraction-total-space' c {x} {.x} refl f e e' H h h' = ( inv-equiv ( equiv-right-transpose-htpy-concat h ( segment-Σ refl f e e' H) ( precomp-Π ( map-equiv f) ( λ y' → Id c (pair x (map-equiv e' y'))) ( h')))) ∘e ( ( equiv-funext) ∘e ( ( equiv-concat' h ( ap ( map-equiv (equiv-tr-contraction-total-space' c refl f e e' H)) ( is-section-map-inv-is-equiv ( is-equiv-map-equiv ( equiv-precomp-Π e' (λ y' → Id c (pair x y')))) ( h')))) ∘e ( ( equiv-concat ( inv ( ( eq-htpy ( square-tr-contraction-total-space c refl f e e' H ( map-inv-equiv (equiv-contraction-total-space c x e) h))) ∙ ( is-section-map-inv-is-equiv ( is-equiv-map-equiv (equiv-contraction-total-space c x e)) ( h)))) ( map-equiv ( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e ( ( equiv-contraction-total-space c x e') ∘e ( inv-equiv (equiv-contraction-total-space c x e')))) ( h'))) ∘e ( equiv-ap ( ( equiv-tr-contraction-total-space' c refl f e e' H) ∘e ( equiv-contraction-total-space c x e')) ( map-inv-equiv (equiv-contraction-total-space c x e) h) ( map-inv-equiv (equiv-contraction-total-space c x e') h')))))
We use the above construction to provide sufficient conditions for the total space of the universal cover to be contractible.
center-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → Σ X (universal-cover-circle l dup-circle) pr1 (center-total-universal-cover-circle l dup-circle) = base-free-loop l pr2 (center-total-universal-cover-circle l dup-circle) = map-equiv ( compute-fiber-universal-cover-circle l dup-circle) zero-ℤ dependent-identification-loop-contraction-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( h : contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → dependent-identification ( contraction-total-space ( center-total-universal-cover-circle l dup-circle)) ( pr2 l) ( map-inv-equiv ( equiv-contraction-total-space ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) ( map-inv-equiv ( equiv-contraction-total-space ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) dependent-identification-loop-contraction-total-universal-cover-circle l dup-circle h p = map-dependent-identification-contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h) ( p) contraction-total-universal-cover-circle-data : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( h : contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → ( t : Σ X (universal-cover-circle l dup-circle)) → Id (center-total-universal-cover-circle l dup-circle) t contraction-total-universal-cover-circle-data {l1} l dup-circle h p (pair x y) = map-inv-is-equiv ( dup-circle ( contraction-total-space ( center-total-universal-cover-circle l dup-circle))) ( pair ( map-inv-equiv ( equiv-contraction-total-space ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) ( h)) ( dependent-identification-loop-contraction-total-universal-cover-circle l dup-circle h p)) x y is-torsorial-universal-cover-circle-data : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( h : contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( base-free-loop l) ( compute-fiber-universal-cover-circle l dup-circle)) → ( p : dependent-identification-contraction-total-space' ( center-total-universal-cover-circle l dup-circle) ( loop-free-loop l) ( equiv-succ-ℤ) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-tr-universal-cover-circle l dup-circle) ( h) ( h)) → is-torsorial (universal-cover-circle l dup-circle) pr1 (is-torsorial-universal-cover-circle-data l dup-circle h p) = center-total-universal-cover-circle l dup-circle pr2 (is-torsorial-universal-cover-circle-data l dup-circle h p) = contraction-total-universal-cover-circle-data l dup-circle h p
Section 12.5 The identity type of the circle
path-total-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) ( k : ℤ) → Id { A = Σ X (universal-cover-circle l dup-circle)} ( pair ( base-free-loop l) ( map-equiv (compute-fiber-universal-cover-circle l dup-circle) k)) ( pair ( base-free-loop l) ( map-equiv ( compute-fiber-universal-cover-circle l dup-circle) ( succ-ℤ k))) path-total-universal-cover-circle l dup-circle k = segment-Σ ( loop-free-loop l) ( equiv-succ-ℤ) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-fiber-universal-cover-circle l dup-circle) ( compute-tr-universal-cover-circle l dup-circle) k CONTRACTION-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → UU l1 CONTRACTION-universal-cover-circle l dup-circle = ELIM-ℤ ( λ k → Id ( center-total-universal-cover-circle l dup-circle) ( pair ( base-free-loop l) ( map-equiv ( compute-fiber-universal-cover-circle l dup-circle) ( k)))) ( refl) ( λ k → equiv-concat' ( center-total-universal-cover-circle l dup-circle) ( path-total-universal-cover-circle l dup-circle k)) Contraction-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → CONTRACTION-universal-cover-circle l dup-circle Contraction-universal-cover-circle l dup-circle = Elim-ℤ ( λ k → Id ( center-total-universal-cover-circle l dup-circle) ( pair ( base-free-loop l) ( map-equiv ( compute-fiber-universal-cover-circle l dup-circle) ( k)))) ( refl) ( λ k → equiv-concat' ( center-total-universal-cover-circle l dup-circle) ( path-total-universal-cover-circle l dup-circle k)) abstract is-torsorial-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → is-torsorial (universal-cover-circle l dup-circle) is-torsorial-universal-cover-circle l dup-circle = is-torsorial-universal-cover-circle-data l dup-circle ( pr1 (Contraction-universal-cover-circle l dup-circle)) ( inv-htpy ( pr2 (pr2 (Contraction-universal-cover-circle l dup-circle)))) point-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → universal-cover-circle l dup-circle (base-free-loop l) point-universal-cover-circle l dup-circle = map-equiv (compute-fiber-universal-cover-circle l dup-circle) zero-ℤ universal-cover-circle-eq : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( x : X) → Id (base-free-loop l) x → universal-cover-circle l dup-circle x universal-cover-circle-eq l dup-circle .(base-free-loop l) refl = point-universal-cover-circle l dup-circle abstract is-equiv-universal-cover-circle-eq : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( x : X) → is-equiv (universal-cover-circle-eq l dup-circle x) is-equiv-universal-cover-circle-eq l dup-circle = fundamental-theorem-id ( is-torsorial-universal-cover-circle l dup-circle) ( universal-cover-circle-eq l dup-circle) equiv-universal-cover-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → ( x : X) → ( Id (base-free-loop l) x) ≃ (universal-cover-circle l dup-circle x) equiv-universal-cover-circle l dup-circle x = pair ( universal-cover-circle-eq l dup-circle x) ( is-equiv-universal-cover-circle-eq l dup-circle x) compute-loop-space-circle : { l1 : Level} {X : UU l1} (l : free-loop X) → ( dup-circle : dependent-universal-property-circle l) → type-Ω (X , base-free-loop l) ≃ ℤ compute-loop-space-circle l dup-circle = ( inv-equiv (compute-fiber-universal-cover-circle l dup-circle)) ∘e ( equiv-universal-cover-circle l dup-circle (base-free-loop l))
The loop of the circle is nontrivial
module _ {l1 : Level} {X : UU l1} (l : free-loop X) (H : dependent-universal-property-circle l) where is-nontrivial-loop-dependent-universal-property-circle : loop-free-loop l ≠ refl is-nontrivial-loop-dependent-universal-property-circle p = is-nonzero-one-ℤ ( is-injective-equiv ( compute-fiber-universal-cover-circle l H) ( ( compute-tr-universal-cover-circle l H zero-ℤ) ∙ ( ap ( λ q → tr ( universal-cover-circle l H) ( q) ( map-compute-fiber-universal-cover-circle l H zero-ℤ)) ( p))))
Recent changes
- 2024-06-04. Fredrik Bakke. Quasiidempotence is not a proposition (#1127).
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-04-23. Egbert Rijke. The loop of any circle is nontrivial (#1115).
- 2024-02-27. Fredrik Bakke. A small optimization to equivalence relations (#1040).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).