Π-decompositions of types into types in a subuniverse
Content created by Egbert Rijke, Fredrik Bakke and Victor Blanchi.
Created on 2023-05-25.
Last modified on 2023-09-11.
module foundation.pi-decompositions-subuniverse where
Imports
open import foundation.dependent-pair-types open import foundation.pi-decompositions open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.propositions
Idea
Consider a subuniverse P
and a type A
in P
. A Π-decomposition of A
into types in P
consists of a type X
in P
and a family Y
of types in P
indexed over X
, equipped with an equivalence
A ≃ Π X Y.
Definition
The predicate of being a Π-decomposition in a subuniverse
is-in-subuniverse-Π-Decomposition : {l1 l2 l3 : Level} (P : subuniverse l1 l2) {A : UU l3} → Π-Decomposition l1 l1 A → UU (l1 ⊔ l2) is-in-subuniverse-Π-Decomposition P D = ( is-in-subuniverse P (indexing-type-Π-Decomposition D)) × ( ( x : indexing-type-Π-Decomposition D) → ( is-in-subuniverse P (cotype-Π-Decomposition D x)))
Π-decompositions in a subuniverse
Π-Decomposition-Subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → type-subuniverse P → UU (lsuc l1 ⊔ l2) Π-Decomposition-Subuniverse P A = Σ ( type-subuniverse P) ( λ X → Σ ( fam-subuniverse P (inclusion-subuniverse P X)) ( λ Y → inclusion-subuniverse P A ≃ Π ( inclusion-subuniverse P X) ( λ x → inclusion-subuniverse P (Y x)))) module _ {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) (D : Π-Decomposition-Subuniverse P A) where subuniverse-indexing-type-Π-Decomposition-Subuniverse : type-subuniverse P subuniverse-indexing-type-Π-Decomposition-Subuniverse = pr1 D indexing-type-Π-Decomposition-Subuniverse : UU l1 indexing-type-Π-Decomposition-Subuniverse = inclusion-subuniverse P subuniverse-indexing-type-Π-Decomposition-Subuniverse is-in-subuniverse-indexing-type-Π-Decomposition-Subuniverse : type-Prop (P indexing-type-Π-Decomposition-Subuniverse) is-in-subuniverse-indexing-type-Π-Decomposition-Subuniverse = pr2 subuniverse-indexing-type-Π-Decomposition-Subuniverse subuniverse-cotype-Π-Decomposition-Subuniverse : fam-subuniverse P indexing-type-Π-Decomposition-Subuniverse subuniverse-cotype-Π-Decomposition-Subuniverse = pr1 (pr2 D) cotype-Π-Decomposition-Subuniverse : (indexing-type-Π-Decomposition-Subuniverse → UU l1) cotype-Π-Decomposition-Subuniverse X = inclusion-subuniverse P (subuniverse-cotype-Π-Decomposition-Subuniverse X) is-in-subuniverse-cotype-Π-Decomposition-Subuniverse : ((x : indexing-type-Π-Decomposition-Subuniverse) → type-Prop (P (cotype-Π-Decomposition-Subuniverse x))) is-in-subuniverse-cotype-Π-Decomposition-Subuniverse x = pr2 (subuniverse-cotype-Π-Decomposition-Subuniverse x) matching-correspondence-Π-Decomposition-Subuniverse : inclusion-subuniverse P A ≃ Π ( indexing-type-Π-Decomposition-Subuniverse) ( cotype-Π-Decomposition-Subuniverse) matching-correspondence-Π-Decomposition-Subuniverse = pr2 (pr2 D)
Properties
The type of Π-decompositions in a subuniverse is equivalent to the total space of is-in-subuniverse-Π-Decomposition
map-equiv-total-is-in-subuniverse-Π-Decomposition : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → Π-Decomposition-Subuniverse P A → Σ ( Π-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Π-Decomposition P) map-equiv-total-is-in-subuniverse-Π-Decomposition P A D = ( indexing-type-Π-Decomposition-Subuniverse P A D , ( cotype-Π-Decomposition-Subuniverse P A D , matching-correspondence-Π-Decomposition-Subuniverse P A D)) , ( is-in-subuniverse-indexing-type-Π-Decomposition-Subuniverse P A D , is-in-subuniverse-cotype-Π-Decomposition-Subuniverse P A D) map-inv-equiv-Π-Decomposition-Π-Decomposition-Subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → Σ ( Π-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Π-Decomposition P) → Π-Decomposition-Subuniverse P A map-inv-equiv-Π-Decomposition-Π-Decomposition-Subuniverse P A X = ( ( indexing-type-Π-Decomposition (pr1 X) , (pr1 (pr2 X))) , ( (λ x → cotype-Π-Decomposition (pr1 X) x , pr2 (pr2 X) x) , matching-correspondence-Π-Decomposition (pr1 X))) equiv-total-is-in-subuniverse-Π-Decomposition : {l1 l2 : Level} (P : subuniverse l1 l2) (A : type-subuniverse P) → ( Π-Decomposition-Subuniverse P A) ≃ ( Σ ( Π-Decomposition l1 l1 (inclusion-subuniverse P A)) ( is-in-subuniverse-Π-Decomposition P)) pr1 (equiv-total-is-in-subuniverse-Π-Decomposition P A) = map-equiv-total-is-in-subuniverse-Π-Decomposition P A pr2 (equiv-total-is-in-subuniverse-Π-Decomposition P A) = is-equiv-is-invertible ( map-inv-equiv-Π-Decomposition-Π-Decomposition-Subuniverse P A) ( refl-htpy) ( refl-htpy)
Recent changes
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-05-25. Victor Blanchi and Egbert Rijke. Dirichlet exponential of species (of types and of types in a subuniverse) (#628).