Decidable propositions
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-07-08.
Last modified on 2025-01-07.
module foundation-core.decidable-propositions where
Imports
open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.double-negation open import foundation.negation open import foundation.propositional-truncations open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.propositions open import foundation-core.subtypes
Idea
A decidable proposition¶ is a proposition that has a decidable underlying type.
Definitions
The property of a proposition of being decidable
is-prop-is-decidable : {l : Level} {A : UU l} → is-prop A → is-prop (is-decidable A) is-prop-is-decidable is-prop-A = is-prop-coproduct intro-double-negation is-prop-A is-prop-neg is-decidable-Prop : {l : Level} → Prop l → Prop l pr1 (is-decidable-Prop P) = is-decidable (type-Prop P) pr2 (is-decidable-Prop P) = is-prop-is-decidable (is-prop-type-Prop P) is-decidable-type-Prop : {l : Level} → Prop l → UU l is-decidable-type-Prop P = is-decidable (type-Prop P)
The subuniverse of decidable propositions
is-decidable-prop : {l : Level} → UU l → UU l is-decidable-prop A = is-prop A × is-decidable A is-prop-is-decidable-prop : {l : Level} (X : UU l) → is-prop (is-decidable-prop X) is-prop-is-decidable-prop X = is-prop-has-element ( λ H → is-prop-product ( is-prop-is-prop X) ( is-prop-is-decidable (pr1 H))) is-decidable-prop-Prop : {l : Level} (A : UU l) → Prop l pr1 (is-decidable-prop-Prop A) = is-decidable-prop A pr2 (is-decidable-prop-Prop A) = is-prop-is-decidable-prop A module _ {l : Level} {A : UU l} (H : is-decidable-prop A) where is-prop-type-is-decidable-prop : is-prop A is-prop-type-is-decidable-prop = pr1 H is-decidable-type-is-decidable-prop : is-decidable A is-decidable-type-is-decidable-prop = pr2 H
Decidable propositions
Decidable-Prop : (l : Level) → UU (lsuc l) Decidable-Prop l = type-subtype is-decidable-prop-Prop module _ {l : Level} (P : Decidable-Prop l) where prop-Decidable-Prop : Prop l prop-Decidable-Prop = tot (λ x → pr1) P type-Decidable-Prop : UU l type-Decidable-Prop = type-Prop prop-Decidable-Prop abstract is-prop-type-Decidable-Prop : is-prop type-Decidable-Prop is-prop-type-Decidable-Prop = is-prop-type-Prop prop-Decidable-Prop is-decidable-Decidable-Prop : is-decidable type-Decidable-Prop is-decidable-Decidable-Prop = pr2 (pr2 P) is-decidable-prop-type-Decidable-Prop : is-decidable-prop type-Decidable-Prop is-decidable-prop-type-Decidable-Prop = pr2 P is-decidable-prop-Decidable-Prop : Prop l pr1 is-decidable-prop-Decidable-Prop = is-decidable type-Decidable-Prop pr2 is-decidable-prop-Decidable-Prop = is-prop-is-decidable is-prop-type-Decidable-Prop
The empty type is a decidable proposition
is-decidable-prop-empty : is-decidable-prop empty pr1 is-decidable-prop-empty = is-prop-empty pr2 is-decidable-prop-empty = inr id empty-Decidable-Prop : Decidable-Prop lzero pr1 empty-Decidable-Prop = empty pr2 empty-Decidable-Prop = is-decidable-prop-empty
Empty types are decidable propositions
is-decidable-prop-is-empty : {l : Level} {A : UU l} → is-empty A → is-decidable-prop A is-decidable-prop-is-empty H = is-prop-is-empty H , inr H
The unit type is a decidable proposition
is-decidable-prop-unit : is-decidable-prop unit pr1 is-decidable-prop-unit = is-prop-unit pr2 is-decidable-prop-unit = inl star unit-Decidable-Prop : Decidable-Prop lzero pr1 unit-Decidable-Prop = unit pr2 unit-Decidable-Prop = is-decidable-prop-unit
Contractible types are decidable propositions
is-decidable-prop-is-contr : {l : Level} {A : UU l} → is-contr A → is-decidable-prop A is-decidable-prop-is-contr H = is-prop-is-contr H , inl (center H)
The product of two decidable propositions is a decidable proposition
module _ {l1 l2 : Level} (P : Decidable-Prop l1) (Q : Decidable-Prop l2) where type-product-Decidable-Prop : UU (l1 ⊔ l2) type-product-Decidable-Prop = type-product-Prop (prop-Decidable-Prop P) (prop-Decidable-Prop Q) is-prop-product-Decidable-Prop : is-prop type-product-Decidable-Prop is-prop-product-Decidable-Prop = is-prop-product-Prop (prop-Decidable-Prop P) (prop-Decidable-Prop Q) is-decidable-product-Decidable-Prop : is-decidable type-product-Decidable-Prop is-decidable-product-Decidable-Prop = is-decidable-product ( is-decidable-Decidable-Prop P) ( is-decidable-Decidable-Prop Q) is-decidable-prop-product-Decidable-Prop : is-decidable-prop type-product-Decidable-Prop pr1 is-decidable-prop-product-Decidable-Prop = is-prop-product-Decidable-Prop pr2 is-decidable-prop-product-Decidable-Prop = is-decidable-product-Decidable-Prop product-Decidable-Prop : Decidable-Prop (l1 ⊔ l2) pr1 product-Decidable-Prop = type-product-Decidable-Prop pr2 product-Decidable-Prop = is-decidable-prop-product-Decidable-Prop
The dependent sum of a family of decidable propositions over a decidable proposition
module _ {l1 l2 : Level} {P : UU l1} {Q : P → UU l2} (H : is-decidable-prop P) (K : (x : P) → is-decidable-prop (Q x)) where is-prop-is-decidable-prop-Σ : is-prop (Σ P Q) is-prop-is-decidable-prop-Σ = is-prop-Σ ( is-prop-type-is-decidable-prop H) ( is-prop-type-is-decidable-prop ∘ K) is-decidable-is-decidable-prop-Σ : is-decidable (Σ P Q) is-decidable-is-decidable-prop-Σ = rec-coproduct ( λ x → rec-coproduct ( λ y → inl (x , y)) ( λ ny → inr ( λ xy → ny ( tr Q ( eq-is-prop (is-prop-type-is-decidable-prop H)) ( pr2 xy)))) ( is-decidable-type-is-decidable-prop (K x))) ( λ nx → inr (λ xy → nx (pr1 xy))) ( is-decidable-type-is-decidable-prop H) is-decidable-prop-Σ : is-decidable-prop (Σ P Q) is-decidable-prop-Σ = ( is-prop-is-decidable-prop-Σ , is-decidable-is-decidable-prop-Σ)
The negation operation on decidable propositions
is-decidable-prop-neg : {l1 : Level} {A : UU l1} → is-decidable A → is-decidable-prop (¬ A) is-decidable-prop-neg is-decidable-A = ( is-prop-neg , is-decidable-neg is-decidable-A) neg-type-Decidable-Prop : {l1 : Level} (A : UU l1) → is-decidable A → Decidable-Prop l1 neg-type-Decidable-Prop A is-decidable-A = ( ¬ A , is-decidable-prop-neg is-decidable-A) neg-Decidable-Prop : {l1 : Level} → Decidable-Prop l1 → Decidable-Prop l1 neg-Decidable-Prop P = neg-type-Decidable-Prop ( type-Decidable-Prop P) ( is-decidable-Decidable-Prop P) type-neg-Decidable-Prop : {l1 : Level} → Decidable-Prop l1 → UU l1 type-neg-Decidable-Prop P = type-Decidable-Prop (neg-Decidable-Prop P)
Decidability of a propositional truncation
abstract is-prop-is-decidable-trunc-Prop : {l : Level} (A : UU l) → is-prop (is-decidable (type-trunc-Prop A)) is-prop-is-decidable-trunc-Prop A = is-prop-is-decidable is-prop-type-trunc-Prop is-decidable-trunc-Prop : {l : Level} → UU l → Prop l pr1 (is-decidable-trunc-Prop A) = is-decidable (type-trunc-Prop A) pr2 (is-decidable-trunc-Prop A) = is-prop-is-decidable-trunc-Prop A is-decidable-trunc-Prop-is-merely-decidable : {l : Level} (A : UU l) → is-merely-decidable A → is-decidable (type-trunc-Prop A) is-decidable-trunc-Prop-is-merely-decidable A = map-universal-property-trunc-Prop ( is-decidable-trunc-Prop A) ( f) where f : is-decidable A → type-Prop (is-decidable-trunc-Prop A) f (inl a) = inl (unit-trunc-Prop a) f (inr f) = inr (map-universal-property-trunc-Prop empty-Prop f) is-merely-decidable-is-decidable-trunc-Prop : {l : Level} (A : UU l) → is-decidable (type-trunc-Prop A) → is-merely-decidable A is-merely-decidable-is-decidable-trunc-Prop A (inl x) = apply-universal-property-trunc-Prop x ( is-merely-decidable-Prop A) ( unit-trunc-Prop ∘ inl) is-merely-decidable-is-decidable-trunc-Prop A (inr f) = unit-trunc-Prop (inr (f ∘ unit-trunc-Prop))
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-24. Fredrik Bakke. Modal type theory (#701).