Epimorphism in large precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-11-24.
module category-theory.epimorphisms-in-large-precategories where
Imports
open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-precategories open import foundation.embeddings open import foundation.equivalences open import foundation.propositions open import foundation.universe-levels
Idea
A morphism f : x → y
is a epimorphism if whenever we have two morphisms
g h : y → w
such that g ∘ f = h ∘ f
, then in fact g = h
. The way to state
this in Homotopy Type Theory is to say that precomposition by f
is an
embedding.
Definition
module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level) (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) (f : hom-Large-Precategory C X Y) where is-epi-prop-Large-Precategory : Prop (α l3 ⊔ β l1 l3 ⊔ β l2 l3) is-epi-prop-Large-Precategory = Π-Prop ( obj-Large-Precategory C l3) ( λ Z → is-emb-Prop (λ g → comp-hom-Large-Precategory C {Z = Z} g f)) is-epi-Large-Precategory : UU (α l3 ⊔ β l1 l3 ⊔ β l2 l3) is-epi-Large-Precategory = type-Prop is-epi-prop-Large-Precategory is-prop-is-epi-Large-Precategory : is-prop is-epi-Large-Precategory is-prop-is-epi-Large-Precategory = is-prop-type-Prop is-epi-prop-Large-Precategory
Properties
Isomorphisms are epimorphisms
module _ {α : Level → Level} {β : Level → Level → Level} (C : Large-Precategory α β) {l1 l2 : Level} (l3 : Level) (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) (f : iso-Large-Precategory C X Y) where is-epi-iso-Large-Precategory : is-epi-Large-Precategory C l3 X Y (hom-iso-Large-Precategory C f) is-epi-iso-Large-Precategory Z = is-emb-is-equiv (is-equiv-precomp-hom-iso-Large-Precategory C f Z)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-11. Fredrik Bakke. Isomorphisms induce equivalences by pre- and postcomposition (#912).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-19. Egbert Rijke. Isomorphisms in large categories and large precategories (#791).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).