The binary maximum of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.binary-maximum-nonnegative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.universe-levels open import order-theory.join-semilattices open import order-theory.large-join-semilattices open import order-theory.least-upper-bounds-large-posets open import real-numbers.binary-maximum-real-numbers open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers
Idea
The maximum¶ of two nonnegative real numbers is itself nonnegative.
Definition
module _ {l1 l2 : Level} (x⁰⁺@(x , 0≤x) : ℝ⁰⁺ l1) (y⁰⁺@(y , 0≤y) : ℝ⁰⁺ l2) where abstract is-nonnegative-max-real-ℝ⁰⁺ : is-nonnegative-ℝ (max-ℝ x y) is-nonnegative-max-real-ℝ⁰⁺ = transitive-leq-ℝ zero-ℝ x (max-ℝ x y) (leq-left-max-ℝ x y) 0≤x max-ℝ⁰⁺ : ℝ⁰⁺ (l1 ⊔ l2) max-ℝ⁰⁺ = (max-ℝ x y , is-nonnegative-max-real-ℝ⁰⁺)
Properties
The binary maximum of nonnegative real numbers is a least upper bound
module _ {l1 l2 : Level} (x⁰⁺@(x , 0≤x) : ℝ⁰⁺ l1) (y⁰⁺@(y , 0≤y) : ℝ⁰⁺ l2) where abstract is-least-binary-upper-bound-max-ℝ⁰⁺ : is-least-binary-upper-bound-Large-Poset ( large-poset-ℝ⁰⁺) ( x⁰⁺) ( y⁰⁺) ( max-ℝ⁰⁺ x⁰⁺ y⁰⁺) is-least-binary-upper-bound-max-ℝ⁰⁺ (z , _) = is-least-binary-upper-bound-max-ℝ x y z
The large poset of nonnegative real numbers has joins
has-joins-large-poset-ℝ⁰⁺ : has-joins-Large-Poset large-poset-ℝ⁰⁺ has-joins-large-poset-ℝ⁰⁺ = λ where .join-has-joins-Large-Poset → max-ℝ⁰⁺ .is-least-binary-upper-bound-join-has-joins-Large-Poset → is-least-binary-upper-bound-max-ℝ⁰⁺
The nonnegative real numbers are a large join semilattice
is-large-join-semilattice-large-poset-ℝ⁰⁺ : is-large-join-semilattice-Large-Poset large-poset-ℝ⁰⁺ is-large-join-semilattice-large-poset-ℝ⁰⁺ = λ where .has-joins-is-large-join-semilattice-Large-Poset → has-joins-large-poset-ℝ⁰⁺ .has-bottom-element-is-large-join-semilattice-Large-Poset → has-bottom-element-large-poset-ℝ⁰⁺ large-join-semilattice-ℝ⁰⁺ : Large-Join-Semilattice lsuc (_⊔_) large-join-semilattice-ℝ⁰⁺ = λ where .large-poset-Large-Join-Semilattice → large-poset-ℝ⁰⁺ .is-large-join-semilattice-Large-Join-Semilattice → is-large-join-semilattice-large-poset-ℝ⁰⁺ order-theoretic-join-semilattice-ℝ⁰⁺ : (l : Level) → Order-Theoretic-Join-Semilattice (lsuc l) l order-theoretic-join-semilattice-ℝ⁰⁺ = order-theoretic-join-semilattice-Large-Join-Semilattice ( large-join-semilattice-ℝ⁰⁺)
See also
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).