Subspaces of metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.subspaces-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.extensional-premetric-structures open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.metric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.pseudometric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
Subsets of metric spaces inherit the metric structure of their ambient space. Moreover, the natural inclusion is an isometry.
Definitions
Subsets of metric spaces
module _ (l : Level) {l1 l2 : Level} (A : Metric-Space l1 l2) where subset-Metric-Space : UU (lsuc l ⊔ l1) subset-Metric-Space = subtype l (type-Metric-Space A)
Properties
Subsets of metric spaces are metric spaces
module _ {l l1 l2 : Level} (A : Metric-Space l1 l2) (S : subset-Metric-Space l A) where structure-subset-Metric-Space : Premetric l2 (type-subtype S) structure-subset-Metric-Space d x y = structure-Metric-Space A d (pr1 x) (pr1 y) is-reflexive-structure-subset-Metric-Space : is-reflexive-Premetric structure-subset-Metric-Space is-reflexive-structure-subset-Metric-Space d x = is-reflexive-structure-Metric-Space A d (pr1 x) is-symmetric-structure-subset-Metric-Space : is-symmetric-Premetric structure-subset-Metric-Space is-symmetric-structure-subset-Metric-Space d x y = is-symmetric-structure-Metric-Space A d (pr1 x) (pr1 y) is-triangular-structure-subset-Metric-Space : is-triangular-Premetric structure-subset-Metric-Space is-triangular-structure-subset-Metric-Space x y z = is-triangular-structure-Metric-Space A (pr1 x) (pr1 y) (pr1 z) is-pseudometric-structure-subset-Metric-Space : is-pseudometric-Premetric structure-subset-Metric-Space is-pseudometric-structure-subset-Metric-Space = is-reflexive-structure-subset-Metric-Space , is-symmetric-structure-subset-Metric-Space , is-triangular-structure-subset-Metric-Space is-metric-structure-subset-Metric-Space : is-metric-Premetric structure-subset-Metric-Space pr1 is-metric-structure-subset-Metric-Space = is-pseudometric-structure-subset-Metric-Space pr2 is-metric-structure-subset-Metric-Space = ( is-local-is-tight-Premetric ( structure-subset-Metric-Space) ( λ x y H → eq-type-subtype ( S) ( is-tight-structure-Metric-Space A (pr1 x) (pr1 y) H))) subspace-Metric-Space : Metric-Space (l ⊔ l1) l2 pr1 subspace-Metric-Space = type-subtype S , structure-subset-Metric-Space pr2 subspace-Metric-Space = is-metric-structure-subset-Metric-Space inclusion-subspace-Metric-Space : map-type-Metric-Space subspace-Metric-Space A inclusion-subspace-Metric-Space = inclusion-subtype S
The inclusion of a subspace into its ambient space is an isometry
module _ {l l1 l2 : Level} (A : Metric-Space l1 l2) (S : subset-Metric-Space l A) where is-isometry-inclusion-subspace-Metric-Space : is-isometry-Metric-Space (subspace-Metric-Space A S) (A) (inclusion-subspace-Metric-Space A S) is-isometry-inclusion-subspace-Metric-Space d x y = id-iff isometry-inclusion-subspace-Metric-Space : isometry-Metric-Space (subspace-Metric-Space A S) A isometry-inclusion-subspace-Metric-Space = inclusion-subspace-Metric-Space A S , is-isometry-inclusion-subspace-Metric-Space
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).