Subspaces of metric spaces
Content created by malarbol, Fredrik Bakke and Louis Wasserman.
Created on 2024-09-28.
Last modified on 2025-08-18.
module metric-spaces.subspaces-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.extensionality-pseudometric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.reflexive-rational-neighborhood-relations open import metric-spaces.saturated-rational-neighborhood-relations open import metric-spaces.symmetric-rational-neighborhood-relations open import metric-spaces.triangular-rational-neighborhood-relations
Idea
Subsets of metric spaces inherit the metric structure of their ambient space; these are metric subspaces¶ of metric spaces.
The natural inclusion of subspace into its ambient space is an isometry.
Definitions
Subsets of metric spaces
module _ (l : Level) {l1 l2 : Level} (A : Metric-Space l1 l2) where subset-Metric-Space : UU (lsuc l ⊔ l1) subset-Metric-Space = subtype l (type-Metric-Space A)
Metric subspace of a metric space
module _ {l l1 l2 : Level} (A : Metric-Space l1 l2) (S : subset-Metric-Space l A) where neighborhood-prop-subset-Metric-Space : Rational-Neighborhood-Relation l2 (type-subtype S) neighborhood-prop-subset-Metric-Space d x y = neighborhood-prop-Metric-Space A d (pr1 x) (pr1 y) is-reflexive-neighborhood-subset-Metric-Space : is-reflexive-Rational-Neighborhood-Relation neighborhood-prop-subset-Metric-Space is-reflexive-neighborhood-subset-Metric-Space d x = refl-neighborhood-Metric-Space A d (pr1 x) is-symmetric-neighborhood-subset-Metric-Space : is-symmetric-Rational-Neighborhood-Relation neighborhood-prop-subset-Metric-Space is-symmetric-neighborhood-subset-Metric-Space d x y = symmetric-neighborhood-Metric-Space A d (pr1 x) (pr1 y) is-triangular-neighborhood-subset-Metric-Space : is-triangular-Rational-Neighborhood-Relation neighborhood-prop-subset-Metric-Space is-triangular-neighborhood-subset-Metric-Space x y z = triangular-neighborhood-Metric-Space A (pr1 x) (pr1 y) (pr1 z) is-saturated-neighborhood-subset-Metric-Space : is-saturated-Rational-Neighborhood-Relation neighborhood-prop-subset-Metric-Space is-saturated-neighborhood-subset-Metric-Space ε x y = saturated-neighborhood-Metric-Space ( A) ( ε) ( pr1 x) ( pr1 y) pseudometric-subspace-Metric-Space : Pseudometric-Space (l ⊔ l1) l2 pseudometric-subspace-Metric-Space = ( type-subtype S) , ( neighborhood-prop-subset-Metric-Space , is-reflexive-neighborhood-subset-Metric-Space , is-symmetric-neighborhood-subset-Metric-Space , is-triangular-neighborhood-subset-Metric-Space , is-saturated-neighborhood-subset-Metric-Space) is-extensional-pseudometric-subspace-Metric-Space : is-extensional-Pseudometric-Space pseudometric-subspace-Metric-Space is-extensional-pseudometric-subspace-Metric-Space = is-extensional-is-tight-Pseudometric-Space ( pseudometric-subspace-Metric-Space) ( λ x y → eq-type-subtype S ∘ eq-sim-Metric-Space A (pr1 x) (pr1 y)) subspace-Metric-Space : Metric-Space (l ⊔ l1) l2 subspace-Metric-Space = make-Metric-Space ( type-subtype S) ( neighborhood-prop-subset-Metric-Space) ( is-reflexive-neighborhood-subset-Metric-Space) ( is-symmetric-neighborhood-subset-Metric-Space) ( is-triangular-neighborhood-subset-Metric-Space) ( is-saturated-neighborhood-subset-Metric-Space) ( is-extensional-pseudometric-subspace-Metric-Space)
Inclusion of a metric subspace into its ambient space
module _ {l l1 l2 : Level} (A : Metric-Space l1 l2) (S : subset-Metric-Space l A) where inclusion-subspace-Metric-Space : type-function-Metric-Space ( subspace-Metric-Space A S) ( A) inclusion-subspace-Metric-Space = inclusion-subtype S
Properties
The inclusion of a subspace into its ambient space is an isometry
module _ {l l1 l2 : Level} (A : Metric-Space l1 l2) (S : subset-Metric-Space l A) where is-isometry-inclusion-subspace-Metric-Space : is-isometry-Metric-Space (subspace-Metric-Space A S) (A) (inclusion-subspace-Metric-Space A S) is-isometry-inclusion-subspace-Metric-Space d x y = id-iff isometry-inclusion-subspace-Metric-Space : isometry-Metric-Space (subspace-Metric-Space A S) A isometry-inclusion-subspace-Metric-Space = inclusion-subspace-Metric-Space A S , is-isometry-inclusion-subspace-Metric-Space
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-05-01. malarbol. The short map from a convergent Cauchy approximation in a saturated metric space to its limit (#1402).
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).