The maximum of positive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module elementary-number-theory.maximum-positive-rational-numbers where
Imports
open import elementary-number-theory.inequality-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.identity-types open import order-theory.decidable-total-orders
Idea
The maximum¶ of two positive rational numbers is the greatest rational number of the two.
Definition
max-ℚ⁺ : ℚ⁺ → ℚ⁺ → ℚ⁺ max-ℚ⁺ = max-Decidable-Total-Order decidable-total-order-ℚ⁺
Properties
The binary maximum is associative
abstract associative-max-ℚ⁺ : (x y z : ℚ⁺) → max-ℚ⁺ (max-ℚ⁺ x y) z = max-ℚ⁺ x (max-ℚ⁺ y z) associative-max-ℚ⁺ = associative-max-Decidable-Total-Order decidable-total-order-ℚ⁺
The binary maximum is commutative
abstract commutative-max-ℚ⁺ : (x y : ℚ⁺) → max-ℚ⁺ x y = max-ℚ⁺ y x commutative-max-ℚ⁺ = commutative-max-Decidable-Total-Order decidable-total-order-ℚ⁺
The binary maximum is idempotent
abstract idempotent-max-ℚ⁺ : (x : ℚ⁺) → max-ℚ⁺ x x = x idempotent-max-ℚ⁺ = idempotent-max-Decidable-Total-Order decidable-total-order-ℚ⁺
The binary maximum is an upper bound
abstract leq-left-max-ℚ⁺ : (x y : ℚ⁺) → leq-ℚ⁺ x (max-ℚ⁺ x y) leq-left-max-ℚ⁺ = leq-left-max-Decidable-Total-Order decidable-total-order-ℚ⁺ leq-right-max-ℚ⁺ : (x y : ℚ⁺) → leq-ℚ⁺ y (max-ℚ⁺ x y) leq-right-max-ℚ⁺ = leq-right-max-Decidable-Total-Order decidable-total-order-ℚ⁺
Recent changes
- 2025-10-04. Louis Wasserman. Split out operations on positive rational numbers (#1562).