The maximum of positive rational numbers

Content created by Louis Wasserman.

Created on 2025-10-04.
Last modified on 2025-10-04.

module elementary-number-theory.maximum-positive-rational-numbers where
Imports
open import elementary-number-theory.inequality-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.identity-types

open import order-theory.decidable-total-orders

Idea

The maximum of two positive rational numbers is the greatest rational number of the two.

Definition

max-ℚ⁺ : ℚ⁺  ℚ⁺  ℚ⁺
max-ℚ⁺ = max-Decidable-Total-Order decidable-total-order-ℚ⁺

Properties

The binary maximum is associative

abstract
  associative-max-ℚ⁺ :
    (x y z : ℚ⁺)  max-ℚ⁺ (max-ℚ⁺ x y) z  max-ℚ⁺ x (max-ℚ⁺ y z)
  associative-max-ℚ⁺ =
    associative-max-Decidable-Total-Order decidable-total-order-ℚ⁺

The binary maximum is commutative

abstract
  commutative-max-ℚ⁺ : (x y : ℚ⁺)  max-ℚ⁺ x y  max-ℚ⁺ y x
  commutative-max-ℚ⁺ =
    commutative-max-Decidable-Total-Order decidable-total-order-ℚ⁺

The binary maximum is idempotent

abstract
  idempotent-max-ℚ⁺ : (x : ℚ⁺)  max-ℚ⁺ x x  x
  idempotent-max-ℚ⁺ =
    idempotent-max-Decidable-Total-Order decidable-total-order-ℚ⁺

The binary maximum is an upper bound

abstract
  leq-left-max-ℚ⁺ : (x y : ℚ⁺)  leq-ℚ⁺ x (max-ℚ⁺ x y)
  leq-left-max-ℚ⁺ = leq-left-max-Decidable-Total-Order decidable-total-order-ℚ⁺

  leq-right-max-ℚ⁺ : (x y : ℚ⁺)  leq-ℚ⁺ y (max-ℚ⁺ x y)
  leq-right-max-ℚ⁺ =
    leq-right-max-Decidable-Total-Order decidable-total-order-ℚ⁺

Recent changes