Commuting triangles of morphisms of arrows
Content created by Fredrik Bakke.
Created on 2024-03-22.
Last modified on 2024-04-17.
module foundation.commuting-triangles-of-morphisms-arrows where
Imports
open import foundation.homotopies-morphisms-arrows open import foundation.morphisms-arrows open import foundation.universe-levels
Idea
Consider a triangle of morphisms of arrows
top
f ----> g
\ /
left \ / right
∨ ∨
h
then we can ask that the triangle commutes¶
by asking for a homotopy of morphisms of arrows
left ~ right ∘ top.
This is equivalent to asking for a commuting prism of maps, given the square faces in the diagram
f
∙ ---------> ∙
|\ |\
| \ | \
| \ | \
| ∨ | ∨
| ∙ --- g ---> ∙
| / | /
| / | /
| / | /
∨∨ ∨∨
∙ ---------> ∙.
h
Definition
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {A' : UU l2} {B : UU l3} {B' : UU l4} {C : UU l5} {C' : UU l6} (f : A → A') (g : B → B') (h : C → C') (left : hom-arrow f h) (right : hom-arrow g h) (top : hom-arrow f g) where coherence-triangle-hom-arrow : UU (l1 ⊔ l2 ⊔ l5 ⊔ l6) coherence-triangle-hom-arrow = htpy-hom-arrow f h left (comp-hom-arrow f g h right top) coherence-triangle-hom-arrow' : UU (l1 ⊔ l2 ⊔ l5 ⊔ l6) coherence-triangle-hom-arrow' = htpy-hom-arrow f h (comp-hom-arrow f g h right top) left
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-03-22. Fredrik Bakke. Additions to cartesian morphisms (#1087).