Singleton subtypes
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Vojtěch Štěpančík.
Created on 2022-09-12.
Last modified on 2024-03-14.
module foundation.singleton-subtypes where
Imports
open import foundation.connected-components open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.images-subtypes open import foundation.inhabited-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.sets open import foundation.singleton-induction open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositions
Idea
A singleton subtype of a type X
is a subtype P
of X
of which the underlying type is
contractible. In informal writing, we
will write {x}
for the standard singleton subtype of a
set X
containing the element x
.
Note: If a subtype containing an element x
is a singleton subtype, then it
is also the least subtype containing x
. However, the reverse implication does
not necessarily hold. The condition that a subtype is the least subtype
containing an element x
is only equivalent to the condition that its
underlying type is 0-connected, which is a
weaker condition than being a singleton subtype.
Definitions
The predicate of being a singleton subtype
module _ {l1 l2 : Level} {X : UU l1} (P : subtype l2 X) where is-singleton-subtype-Prop : Prop (l1 ⊔ l2) is-singleton-subtype-Prop = is-contr-Prop (type-subtype P) is-singleton-subtype : UU (l1 ⊔ l2) is-singleton-subtype = type-Prop is-singleton-subtype-Prop is-prop-is-singleton-subtype : is-prop is-singleton-subtype is-prop-is-singleton-subtype = is-prop-type-Prop is-singleton-subtype-Prop
The type of singleton subtypes
singleton-subtype : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) singleton-subtype l2 X = type-subtype (is-singleton-subtype-Prop {l2 = l2} {X}) module _ {l1 l2 : Level} {X : UU l1} (P : singleton-subtype l2 X) where subtype-singleton-subtype : subtype l2 X subtype-singleton-subtype = pr1 P is-singleton-subtype-singleton-subtype : is-singleton-subtype subtype-singleton-subtype is-singleton-subtype-singleton-subtype = pr2 P
Standard singleton subtypes
module _ {l : Level} (X : Set l) (x : type-Set X) where subtype-standard-singleton-subtype : subtype l (type-Set X) subtype-standard-singleton-subtype y = Id-Prop X x y type-standard-singleton-subtype : UU l type-standard-singleton-subtype = type-subtype subtype-standard-singleton-subtype inclusion-standard-singleton-subtype : type-standard-singleton-subtype → type-Set X inclusion-standard-singleton-subtype = inclusion-subtype subtype-standard-singleton-subtype standard-singleton-subtype : singleton-subtype l (type-Set X) pr1 standard-singleton-subtype = subtype-standard-singleton-subtype pr2 standard-singleton-subtype = is-torsorial-Id x inhabited-subtype-standard-singleton-subtype : inhabited-subtype l (type-Set X) pr1 inhabited-subtype-standard-singleton-subtype = subtype-standard-singleton-subtype pr2 inhabited-subtype-standard-singleton-subtype = unit-trunc-Prop (pair x refl)
Properties
If a subtype is a singleton subtype containing x
, then it is the least subtype containing x
module _ {l1 l2 : Level} {X : UU l1} {x : X} (P : subtype l2 X) (p : is-in-subtype P x) where is-least-subtype-containing-element-is-singleton-subtype : is-singleton-subtype P → is-least-subtype-containing-element x P pr1 (is-least-subtype-containing-element-is-singleton-subtype H Q) L = L x p pr2 (is-least-subtype-containing-element-is-singleton-subtype H Q) q y r = ind-singleton (x , p) H (is-in-subtype Q ∘ pr1) q (y , r)
If the identity type y ↦ x = y
is a subtype, then a subtype containing x
is a singleton subtype if and only if it is the least subtype containing x
Proof: We already showed the forward direction. For the converse, suppose
that the identity type y ↦ x = y
is a
subtype and that P
is the least subtype containing the element x
. To show
that Σ X P
is contractible, we use the element (x , p)
as the center of
contraction, where p : P x
is assumed. Then it remains to construct the
contraction. Recall that for any element (y , q) : Σ X P
we have a function
eq-type-subtype P : (x = y) → ((x , p) = (y , q)).
Therefore it suffices to show that x = y
. This is a
proposition. By the assumption that P
is
the least subtype containing x
we have a function P u → x = u
for all u
,
so x = y
follows.
module _ {l1 l2 : Level} {X : UU l1} {x : X} (P : subtype l2 X) (p : is-in-subtype P x) where is-singleton-subtype-is-least-subtype-containing-element : (H : (y : X) → is-prop (x = y)) → is-least-subtype-containing-element x P → is-singleton-subtype P pr1 (is-singleton-subtype-is-least-subtype-containing-element H L) = (x , p) pr2 (is-singleton-subtype-is-least-subtype-containing-element H L) (y , q) = eq-type-subtype P (backward-implication (L (λ y → x = y , H y)) refl y q) is-singleton-subtype-is-least-subtype-containing-element-Set : {l1 l2 : Level} (X : Set l1) {x : type-Set X} (P : subtype l2 (type-Set X)) (p : is-in-subtype P x) → is-least-subtype-containing-element x P → is-singleton-subtype P is-singleton-subtype-is-least-subtype-containing-element-Set X P p = is-singleton-subtype-is-least-subtype-containing-element P p ( is-set-type-Set X _)
Any two singleton subtypes containing a given element x
have the same elements
module _ {l1 l2 l3 : Level} {X : UU l1} {x : X} (P : subtype l2 X) (Q : subtype l3 X) (p : is-in-subtype P x) (q : is-in-subtype Q x) where inclusion-is-singleton-subtype : is-singleton-subtype P → P ⊆ Q inclusion-is-singleton-subtype s = backward-implication ( is-least-subtype-containing-element-is-singleton-subtype P p s Q) ( q) module _ {l1 l2 l3 : Level} {X : UU l1} {x : X} (P : subtype l2 X) (Q : subtype l3 X) (p : is-in-subtype P x) (q : is-in-subtype Q x) where has-same-elements-is-singleton-subtype : is-singleton-subtype P → is-singleton-subtype Q → has-same-elements-subtype P Q pr1 (has-same-elements-is-singleton-subtype s t y) = inclusion-is-singleton-subtype P Q p q s y pr2 (has-same-elements-is-singleton-subtype s t y) = inclusion-is-singleton-subtype Q P q p t y
The standard singleton subtype {x}
of a set is the least subtype containing x
module _ {l1 : Level} (X : Set l1) (x : type-Set X) where is-least-subtype-containing-element-Set : is-least-subtype-containing-element x ( subtype-standard-singleton-subtype X x) pr1 (is-least-subtype-containing-element-Set A) H = H x refl pr2 (is-least-subtype-containing-element-Set A) H .x refl = H
The image of the standard singleton subtype {x}
under a map f : X → Y
is the standard singleton subtype {f(x)}
Proof: Our goal is to show that the type
Σ Y (λ y → ∥ Σ (Σ X (λ u → x = u)) (λ v → f (inclusion v) = y) ∥ )
Since the type Σ X (λ u → x = u)
is contractible, the above type is
equivalent to
Σ Y (λ y → ∥ f x = y ∥ )
Note that the identity type f x = y
of a set is a
proposition, so this type is equivalent to the type Σ Y (λ y → f x = y)
,
which is of course contractible.
module _ {l1 l2 : Level} (X : Set l1) (Y : Set l2) (f : hom-Set X Y) (x : type-Set X) where abstract is-singleton-im-singleton-subtype : is-singleton-subtype ( im-subtype f (subtype-standard-singleton-subtype X x)) is-singleton-im-singleton-subtype = is-contr-equiv ( Σ (type-Set Y) (λ y → f x = y)) ( equiv-tot ( λ y → ( inv-equiv (equiv-unit-trunc-Prop (Id-Prop Y (f x) y))) ∘e ( equiv-trunc-Prop ( left-unit-law-Σ-is-contr (is-torsorial-Id x) (x , refl))))) ( is-torsorial-Id (f x)) compute-im-singleton-subtype : has-same-elements-subtype ( subtype-standard-singleton-subtype Y (f x)) ( im-subtype f (subtype-standard-singleton-subtype X x)) compute-im-singleton-subtype = has-same-elements-is-singleton-subtype ( subtype-standard-singleton-subtype Y (f x)) ( im-subtype f (subtype-standard-singleton-subtype X x)) ( refl) ( unit-trunc-Prop ((x , refl) , refl)) ( is-torsorial-Id (f x)) ( is-singleton-im-singleton-subtype)
See also
Recent changes
- 2024-03-14. Egbert Rijke. Move torsoriality of the identity type to
foundation-core.torsorial-type-families
(#1065). - 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2024-01-05. Vojtěch Štěpančík. Deduplicate singleton-induction (#991).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-24. Egbert Rijke. Abelianization (#877).