Homomorphisms of large suplattices
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-05-12.
Last modified on 2023-11-24.
module order-theory.homomorphisms-large-suplattices where
Imports
open import foundation.identity-types open import foundation.universe-levels open import order-theory.large-suplattices open import order-theory.order-preserving-maps-large-posets
Idea
A homomorphism of large suplattices is an order preserving map that preserves least upper bounds.
Definitions
The predicate of being a homomorphism of large suplattices
module _ {αK αL : Level → Level} {βK βL : Level → Level → Level} {γ : Level} (K : Large-Suplattice αK βK γ) (L : Large-Suplattice αL βL γ) where preserves-sup-hom-Large-Poset : hom-Large-Poset ( λ l → l) ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) → UUω preserves-sup-hom-Large-Poset f = {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Suplattice K l2) → ( map-hom-Large-Poset ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) ( f) ( sup-Large-Suplattice K x)) = sup-Large-Suplattice L ( λ i → map-hom-Large-Poset ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) ( f) ( x i)) record hom-Large-Suplattice : UUω where field hom-large-poset-hom-Large-Suplattice : hom-Large-Poset ( λ l → l) ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) preserves-sup-hom-Large-Suplattice : preserves-sup-hom-Large-Poset hom-large-poset-hom-Large-Suplattice open hom-Large-Suplattice public module _ (f : hom-Large-Suplattice) where map-hom-Large-Suplattice : {l1 : Level} → type-Large-Suplattice K l1 → type-Large-Suplattice L l1 map-hom-Large-Suplattice = map-hom-Large-Poset ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) ( hom-large-poset-hom-Large-Suplattice f) preserves-order-map-hom-Large-Suplattice : {l1 l2 : Level} (x : type-Large-Suplattice K l1) (y : type-Large-Suplattice K l2) → leq-Large-Suplattice K x y → leq-Large-Suplattice L ( map-hom-Large-Suplattice x) ( map-hom-Large-Suplattice y) preserves-order-map-hom-Large-Suplattice = preserves-order-hom-Large-Poset ( large-poset-Large-Suplattice K) ( large-poset-Large-Suplattice L) ( hom-large-poset-hom-Large-Suplattice f)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).