Finite groups
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-12.
Last modified on 2025-01-06.
module finite-group-theory.finite-groups where
Imports
open import elementary-number-theory.natural-numbers open import finite-group-theory.finite-monoids open import finite-group-theory.finite-semigroups open import foundation.1-types open import foundation.binary-embeddings open import foundation.binary-equivalences open import foundation.decidable-equality open import foundation.decidable-types open import foundation.embeddings open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.injective-maps open import foundation.mere-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.category-of-groups open import group-theory.commuting-elements-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import structured-types.pointed-types open import univalent-combinatorics.cartesian-product-types open import univalent-combinatorics.counting open import univalent-combinatorics.counting-dependent-pair-types open import univalent-combinatorics.decidable-dependent-function-types open import univalent-combinatorics.decidable-dependent-pair-types open import univalent-combinatorics.decidable-propositions open import univalent-combinatorics.dependent-function-types open import univalent-combinatorics.dependent-pair-types open import univalent-combinatorics.equality-finite-types open import univalent-combinatorics.finite-types open import univalent-combinatorics.finitely-many-connected-components open import univalent-combinatorics.function-types open import univalent-combinatorics.pi-finite-types open import univalent-combinatorics.standard-finite-types open import univalent-combinatorics.untruncated-pi-finite-types
Idea
An (abstract) finite group¶ is a finite group in the
usual algebraic sense, i.e., it consists of a
finite type
equipped with a unit element e
, a binary operation
x, y ↦ xy
, and an inverse operation x ↦ x⁻¹
satisfying the
group laws
(xy)z = x(yz) (associativity)
ex = x (left unit law)
xe = x (right unit law)
x⁻¹x = e (left inverse law)
xx⁻¹ = e (right inverse law)
Definitions
The condition that a finite semigroup is a finite group
is-group-𝔽 : {l : Level} (G : Semigroup-𝔽 l) → UU l is-group-𝔽 G = is-group-Semigroup (semigroup-Semigroup-𝔽 G)
The type of finite groups
Group-𝔽 : (l : Level) → UU (lsuc l) Group-𝔽 l = Σ (Semigroup-𝔽 l) (is-group-𝔽) module _ {l : Level} (G : Group-𝔽 l) where finite-semigroup-Group-𝔽 : Semigroup-𝔽 l finite-semigroup-Group-𝔽 = pr1 G semigroup-Group-𝔽 : Semigroup l semigroup-Group-𝔽 = semigroup-Semigroup-𝔽 finite-semigroup-Group-𝔽 is-group-Group-𝔽 : is-group-Semigroup semigroup-Group-𝔽 is-group-Group-𝔽 = pr2 G group-Group-𝔽 : Group l pr1 group-Group-𝔽 = semigroup-Group-𝔽 pr2 group-Group-𝔽 = is-group-Group-𝔽 finite-type-Group-𝔽 : 𝔽 l finite-type-Group-𝔽 = finite-type-Semigroup-𝔽 finite-semigroup-Group-𝔽 type-Group-𝔽 : UU l type-Group-𝔽 = type-Group group-Group-𝔽 is-finite-type-Group-𝔽 : is-finite type-Group-𝔽 is-finite-type-Group-𝔽 = is-finite-type-𝔽 finite-type-Group-𝔽 has-decidable-equality-Group-𝔽 : has-decidable-equality type-Group-𝔽 has-decidable-equality-Group-𝔽 = has-decidable-equality-is-finite is-finite-type-Group-𝔽 is-set-type-Group-𝔽 : is-set type-Group-𝔽 is-set-type-Group-𝔽 = is-set-type-Group group-Group-𝔽 set-Group-𝔽 : Set l set-Group-𝔽 = set-Group group-Group-𝔽 has-associative-mul-Group-𝔽 : has-associative-mul type-Group-𝔽 has-associative-mul-Group-𝔽 = has-associative-mul-Group group-Group-𝔽 mul-Group-𝔽 : (x y : type-Group-𝔽) → type-Group-𝔽 mul-Group-𝔽 = mul-Group group-Group-𝔽 ap-mul-Group-𝔽 : {x x' y y' : type-Group-𝔽} → (x = x') → (y = y') → mul-Group-𝔽 x y = mul-Group-𝔽 x' y' ap-mul-Group-𝔽 = ap-mul-Group group-Group-𝔽 mul-Group-𝔽' : (x y : type-Group-𝔽) → type-Group-𝔽 mul-Group-𝔽' = mul-Group' group-Group-𝔽 associative-mul-Group-𝔽 : (x y z : type-Group-𝔽) → ( mul-Group-𝔽 (mul-Group-𝔽 x y) z) = ( mul-Group-𝔽 x (mul-Group-𝔽 y z)) associative-mul-Group-𝔽 = associative-mul-Group group-Group-𝔽 is-unital-Group-𝔽 : is-unital-Semigroup semigroup-Group-𝔽 is-unital-Group-𝔽 = is-unital-Group group-Group-𝔽 monoid-Group-𝔽 : Monoid l monoid-Group-𝔽 = monoid-Group group-Group-𝔽 unit-Group-𝔽 : type-Group-𝔽 unit-Group-𝔽 = unit-Group group-Group-𝔽 is-unit-Group-𝔽 : type-Group-𝔽 → UU l is-unit-Group-𝔽 = is-unit-Group group-Group-𝔽 is-decidable-is-unit-Group-𝔽 : (x : type-Group-𝔽) → is-decidable (is-unit-Group-𝔽 x) is-decidable-is-unit-Group-𝔽 x = has-decidable-equality-Group-𝔽 x unit-Group-𝔽 is-prop-is-unit-Group-𝔽 : (x : type-Group-𝔽) → is-prop (is-unit-Group-𝔽 x) is-prop-is-unit-Group-𝔽 = is-prop-is-unit-Group group-Group-𝔽 is-decidable-prop-is-unit-Group-𝔽 : (x : type-Group-𝔽) → is-decidable-prop (is-unit-Group-𝔽 x) pr1 (is-decidable-prop-is-unit-Group-𝔽 x) = is-prop-is-unit-Group-𝔽 x pr2 (is-decidable-prop-is-unit-Group-𝔽 x) = is-decidable-is-unit-Group-𝔽 x is-unit-prop-Group-𝔽 : type-Group-𝔽 → Prop l is-unit-prop-Group-𝔽 = is-unit-prop-Group group-Group-𝔽 is-unit-finite-group-Decidable-Prop : type-Group-𝔽 → Decidable-Prop l pr1 (is-unit-finite-group-Decidable-Prop x) = is-unit-Group-𝔽 x pr2 (is-unit-finite-group-Decidable-Prop x) = is-decidable-prop-is-unit-Group-𝔽 x left-unit-law-mul-Group-𝔽 : (x : type-Group-𝔽) → mul-Group-𝔽 unit-Group-𝔽 x = x left-unit-law-mul-Group-𝔽 = left-unit-law-mul-Group group-Group-𝔽 right-unit-law-mul-Group-𝔽 : (x : type-Group-𝔽) → mul-Group-𝔽 x unit-Group-𝔽 = x right-unit-law-mul-Group-𝔽 = right-unit-law-mul-Group group-Group-𝔽 pointed-type-Group-𝔽 : Pointed-Type l pointed-type-Group-𝔽 = pointed-type-Group group-Group-𝔽 has-inverses-Group-𝔽 : is-group-is-unital-Semigroup semigroup-Group-𝔽 is-unital-Group-𝔽 has-inverses-Group-𝔽 = has-inverses-Group group-Group-𝔽 inv-Group-𝔽 : type-Group-𝔽 → type-Group-𝔽 inv-Group-𝔽 = inv-Group group-Group-𝔽 left-inverse-law-mul-Group-𝔽 : (x : type-Group-𝔽) → mul-Group-𝔽 (inv-Group-𝔽 x) x = unit-Group-𝔽 left-inverse-law-mul-Group-𝔽 = left-inverse-law-mul-Group group-Group-𝔽 right-inverse-law-mul-Group-𝔽 : (x : type-Group-𝔽) → mul-Group-𝔽 x (inv-Group-𝔽 x) = unit-Group-𝔽 right-inverse-law-mul-Group-𝔽 = right-inverse-law-mul-Group group-Group-𝔽 inv-unit-Group-𝔽 : inv-Group-𝔽 unit-Group-𝔽 = unit-Group-𝔽 inv-unit-Group-𝔽 = inv-unit-Group group-Group-𝔽 is-section-left-div-Group-𝔽 : (x : type-Group-𝔽) → ( mul-Group-𝔽 x ∘ mul-Group-𝔽 (inv-Group-𝔽 x)) ~ id is-section-left-div-Group-𝔽 = is-section-left-div-Group group-Group-𝔽 is-retraction-left-div-Group-𝔽 : (x : type-Group-𝔽) → ( mul-Group-𝔽 (inv-Group-𝔽 x) ∘ mul-Group-𝔽 x) ~ id is-retraction-left-div-Group-𝔽 = is-retraction-left-div-Group group-Group-𝔽 is-equiv-mul-Group-𝔽 : (x : type-Group-𝔽) → is-equiv (mul-Group-𝔽 x) is-equiv-mul-Group-𝔽 = is-equiv-mul-Group group-Group-𝔽 equiv-mul-Group-𝔽 : (x : type-Group-𝔽) → type-Group-𝔽 ≃ type-Group-𝔽 equiv-mul-Group-𝔽 = equiv-mul-Group group-Group-𝔽 is-section-right-div-Group-𝔽 : (x : type-Group-𝔽) → (mul-Group-𝔽' x ∘ mul-Group-𝔽' (inv-Group-𝔽 x)) ~ id is-section-right-div-Group-𝔽 = is-section-right-div-Group group-Group-𝔽 is-retraction-right-div-Group-𝔽 : (x : type-Group-𝔽) → (mul-Group-𝔽' (inv-Group-𝔽 x) ∘ mul-Group-𝔽' x) ~ id is-retraction-right-div-Group-𝔽 = is-retraction-right-div-Group group-Group-𝔽 is-equiv-mul-Group-𝔽' : (x : type-Group-𝔽) → is-equiv (mul-Group-𝔽' x) is-equiv-mul-Group-𝔽' = is-equiv-mul-Group' group-Group-𝔽 equiv-mul-Group-𝔽' : (x : type-Group-𝔽) → type-Group-𝔽 ≃ type-Group-𝔽 equiv-mul-Group-𝔽' = equiv-mul-Group' group-Group-𝔽 is-binary-equiv-mul-Group-𝔽 : is-binary-equiv mul-Group-𝔽 is-binary-equiv-mul-Group-𝔽 = is-binary-equiv-mul-Group group-Group-𝔽 is-binary-emb-mul-Group-𝔽 : is-binary-emb mul-Group-𝔽 is-binary-emb-mul-Group-𝔽 = is-binary-emb-mul-Group group-Group-𝔽 is-emb-mul-Group-𝔽 : (x : type-Group-𝔽) → is-emb (mul-Group-𝔽 x) is-emb-mul-Group-𝔽 = is-emb-mul-Group group-Group-𝔽 is-emb-mul-Group-𝔽' : (x : type-Group-𝔽) → is-emb (mul-Group-𝔽' x) is-emb-mul-Group-𝔽' = is-emb-mul-Group' group-Group-𝔽 is-injective-mul-Group-𝔽 : (x : type-Group-𝔽) → is-injective (mul-Group-𝔽 x) is-injective-mul-Group-𝔽 = is-injective-mul-Group group-Group-𝔽 is-injective-mul-Group-𝔽' : (x : type-Group-𝔽) → is-injective (mul-Group-𝔽' x) is-injective-mul-Group-𝔽' = is-injective-mul-Group' group-Group-𝔽 transpose-eq-mul-Group-𝔽 : {x y z : type-Group-𝔽} → (mul-Group-𝔽 x y = z) → (x = mul-Group-𝔽 z (inv-Group-𝔽 y)) transpose-eq-mul-Group-𝔽 = transpose-eq-mul-Group group-Group-𝔽 transpose-eq-mul-Group-𝔽' : {x y z : type-Group-𝔽} → (mul-Group-𝔽 x y = z) → (y = mul-Group-𝔽 (inv-Group-𝔽 x) z) transpose-eq-mul-Group-𝔽' = transpose-eq-mul-Group' group-Group-𝔽 distributive-inv-mul-Group-𝔽 : {x y : type-Group-𝔽} → ( inv-Group-𝔽 (mul-Group-𝔽 x y)) = ( mul-Group-𝔽 (inv-Group-𝔽 y) (inv-Group-𝔽 x)) distributive-inv-mul-Group-𝔽 = distributive-inv-mul-Group group-Group-𝔽 inv-inv-Group-𝔽 : (x : type-Group-𝔽) → inv-Group-𝔽 (inv-Group-𝔽 x) = x inv-inv-Group-𝔽 = inv-inv-Group group-Group-𝔽 finite-group-is-finite-Group : {l : Level} → (G : Group l) → is-finite (type-Group G) → Group-𝔽 l pr1 (finite-group-is-finite-Group G f) = finite-semigroup-is-finite-Semigroup (semigroup-Group G) f pr2 (finite-group-is-finite-Group G f) = is-group-Group G module _ {l : Level} (G : Group-𝔽 l) where commute-Group-𝔽 : type-Group-𝔽 G → type-Group-𝔽 G → UU l commute-Group-𝔽 = commute-Group (group-Group-𝔽 G) finite-monoid-Group-𝔽 : Monoid-𝔽 l pr1 finite-monoid-Group-𝔽 = finite-semigroup-Group-𝔽 G pr2 finite-monoid-Group-𝔽 = is-unital-Group-𝔽 G
Groups of fixed finite order
Group-of-Order : (l : Level) (n : ℕ) → UU (lsuc l) Group-of-Order l n = Σ (Group l) (λ G → mere-equiv (Fin n) (type-Group G)) Group-of-Order' : (l : Level) (n : ℕ) → UU (lsuc l) Group-of-Order' l n = Σ (Semigroup-of-Order l n) (λ X → is-group-Semigroup (pr1 X)) compute-Group-of-Order : {l : Level} (n : ℕ) → Group-of-Order l n ≃ Group-of-Order' l n compute-Group-of-Order n = equiv-right-swap-Σ
Properties
The type of groups of order n
is a 1-type
is-1-type-Group-of-Order : {l : Level} (n : ℕ) → is-1-type (Group-of-Order l n) is-1-type-Group-of-Order n = is-1-type-type-subtype (mere-equiv-Prop (Fin n) ∘ type-Group) is-1-type-Group
The type is-group-Semigroup G
is finite for any semigroup of fixed finite order
is-finite-is-group-Semigroup : {l : Level} (n : ℕ) (G : Semigroup-of-Order l n) → is-finite {l} (is-group-Semigroup (pr1 G)) is-finite-is-group-Semigroup {l} n G = apply-universal-property-trunc-Prop ( pr2 G) ( is-finite-Prop _) ( λ e → is-finite-is-decidable-Prop ( is-group-prop-Semigroup (pr1 G)) ( is-decidable-Σ-count ( count-Σ ( pair n e) ( λ u → count-product ( count-Π ( pair n e) ( λ x → count-eq ( has-decidable-equality-count (pair n e)) ( mul-Semigroup (pr1 G) u x) ( x))) ( count-Π ( pair n e) ( λ x → count-eq ( has-decidable-equality-count (pair n e)) ( mul-Semigroup (pr1 G) x u) ( x))))) ( λ u → is-decidable-Σ-count ( count-function-type (pair n e) (pair n e)) ( λ i → is-decidable-product ( is-decidable-Π-count ( pair n e) ( λ x → has-decidable-equality-count ( pair n e) ( mul-Semigroup (pr1 G) (i x) x) ( pr1 u))) ( is-decidable-Π-count ( pair n e) ( λ x → has-decidable-equality-count ( pair n e) ( mul-Semigroup (pr1 G) x (i x)) ( pr1 u)))))))
The type of groups of order n
is π₁-finite
is-untruncated-π-finite-Group-of-Order : {l : Level} (k n : ℕ) → is-untruncated-π-finite k (Group-of-Order l n) is-untruncated-π-finite-Group-of-Order {l} k n = is-untruncated-π-finite-equiv k ( compute-Group-of-Order n) ( is-untruncated-π-finite-Σ k ( is-untruncated-π-finite-Semigroup-of-Order (succ-ℕ k) n) ( λ X → is-untruncated-π-finite-is-finite k ( is-finite-is-group-Semigroup n X))) is-π-finite-Group-of-Order : {l : Level} (n : ℕ) → is-π-finite 1 (Group-of-Order l n) is-π-finite-Group-of-Order n = is-π-finite-is-untruncated-π-finite 1 ( is-1-type-Group-of-Order n) ( is-untruncated-π-finite-Group-of-Order 1 n)
The number of groups of a given order up to isomorphism
The number of groups of order n
is listed as
A000001 in the OEIS
[OEIS].
number-of-groups-of-order : ℕ → ℕ number-of-groups-of-order n = number-of-connected-components ( is-untruncated-π-finite-Group-of-Order {lzero} zero-ℕ n) mere-equiv-number-of-groups-of-order : (n : ℕ) → mere-equiv ( Fin (number-of-groups-of-order n)) ( type-trunc-Set (Group-of-Order lzero n)) mere-equiv-number-of-groups-of-order n = mere-equiv-number-of-connected-components ( is-untruncated-π-finite-Group-of-Order {lzero} zero-ℕ n)
There is a finite number of ways to equip a finite type with the structure of a group
module _ {l : Level} (X : 𝔽 l) where structure-group-𝔽 : UU l structure-group-𝔽 = Σ (structure-semigroup-𝔽 X) (λ s → is-group-𝔽 (X , s)) finite-group-structure-group-𝔽 : structure-group-𝔽 → Group-𝔽 l pr1 (finite-group-structure-group-𝔽 (s , g)) = (X , s) pr2 (finite-group-structure-group-𝔽 (s , g)) = g is-finite-structure-group-𝔽 : is-finite (structure-group-𝔽) is-finite-structure-group-𝔽 = is-finite-Σ ( is-finite-structure-semigroup-𝔽 X) ( λ s → is-finite-Σ ( is-finite-is-unital-Semigroup-𝔽 (X , s)) ( λ u → is-finite-Σ ( is-finite-Π ( is-finite-type-𝔽 X) ( λ _ → is-finite-type-𝔽 X)) ( λ i → is-finite-product ( is-finite-Π ( is-finite-type-𝔽 X) ( λ x → is-finite-eq-𝔽 X)) ( is-finite-Π ( is-finite-type-𝔽 X) ( λ x → is-finite-eq-𝔽 X)))))
References
- [OEIS]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. website. URL: https://oeis.org.
Recent changes
- 2025-01-06. Fredrik Bakke and Egbert Rijke. Fix terminology for π-finite types (#1234).
- 2024-08-22. Fredrik Bakke. Cleanup of finite types (#1166).
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017).