The opposite of a semigroup
Content created by Fredrik Bakke.
Created on 2023-11-04.
Last modified on 2023-11-04.
module group-theory.opposite-semigroups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.semigroups
Idea
The opposite of a semigroup G
with
multiplication μ
is a semigroup with the same underlying
set as G
and multiplication given by x y ↦ μ y x
.
Definition
module _ {l : Level} (G : Semigroup l) where set-op-Semigroup : Set l set-op-Semigroup = set-Semigroup G type-op-Semigroup : UU l type-op-Semigroup = type-Set set-op-Semigroup mul-op-Semigroup : type-op-Semigroup → type-op-Semigroup → type-op-Semigroup mul-op-Semigroup x y = mul-Semigroup G y x associative-mul-op-Semigroup : (x y z : type-op-Semigroup) → mul-Semigroup G z (mul-Semigroup G y x) = mul-Semigroup G (mul-Semigroup G z y) x associative-mul-op-Semigroup x y z = inv (associative-mul-Semigroup G z y x) op-Semigroup : Semigroup l pr1 op-Semigroup = set-op-Semigroup pr1 (pr2 op-Semigroup) = mul-op-Semigroup pr2 (pr2 op-Semigroup) = associative-mul-op-Semigroup
Recent changes
- 2023-11-04. Fredrik Bakke. Small fixes concrete groups (#897).