Images of semigroup homomorphisms
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module group-theory.images-of-semigroup-homomorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.images open import foundation.images-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.universal-property-image open import foundation.universe-levels open import group-theory.homomorphisms-semigroups open import group-theory.pullbacks-subsemigroups open import group-theory.semigroups open import group-theory.subsemigroups open import group-theory.subsets-semigroups open import order-theory.galois-connections-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders
Idea
The image of a
semigroup homomorphism f : G → H
consists of the image of the underlying map of f
. This
subset is closed under multiplication, so
it is a subsemigroup of the
semigroup H
. Alternatively, it can be described
as the least subsemigroup of H
that contains all the values of f
.
More generally, the image of a subsemigroup S
under a semigroup
homomorphism f : G → H
is the subsemigroup consisting of all the elements in
the image of the underlying subset of S
under
the underlying map of f
. Since the image of a subsemigroup satisfies the
following adjoint relation
(im f S ⊆ T) ↔ (S ⊆ T ∘ f)
it follows that we obtain a Galois connection.
Definitions
The universal property of the image of a semigroup homomorphism
module _ {l1 l2 l3 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) (K : Subsemigroup l3 H) where is-image-hom-Semigroup : UUω is-image-hom-Semigroup = {l : Level} (L : Subsemigroup l H) → leq-Subsemigroup H K L ↔ ( (g : type-Semigroup G) → is-in-Subsemigroup H L (map-hom-Semigroup G H f g))
The universal property of the image subsemigroup of a subsemigroup
module _ {l1 l2 l3 l4 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) (S : Subsemigroup l3 G) (T : Subsemigroup l4 H) where is-image-subsemigroup-hom-Semigroup : UUω is-image-subsemigroup-hom-Semigroup = {l : Level} (U : Subsemigroup l H) → leq-Subsemigroup H T U ↔ leq-Subsemigroup G S (pullback-Subsemigroup G H f U)
The image subsemigroup under a semigroup homomorphism
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where subset-image-hom-Semigroup : subset-Semigroup (l1 ⊔ l2) H subset-image-hom-Semigroup = subtype-im (map-hom-Semigroup G H f) is-image-subtype-subset-image-hom-Semigroup : is-image-subtype (map-hom-Semigroup G H f) subset-image-hom-Semigroup is-image-subtype-subset-image-hom-Semigroup = is-image-subtype-subtype-im (map-hom-Semigroup G H f) abstract is-closed-under-multiplication-image-hom-Semigroup : is-closed-under-multiplication-subset-Semigroup H subset-image-hom-Semigroup is-closed-under-multiplication-image-hom-Semigroup {x} {y} K L = apply-twice-universal-property-trunc-Prop K L ( subset-image-hom-Semigroup (mul-Semigroup H x y)) ( λ where ( g , refl) (h , refl) → unit-trunc-Prop ( mul-Semigroup G g h , preserves-mul-hom-Semigroup G H f)) image-hom-Semigroup : Subsemigroup (l1 ⊔ l2) H pr1 image-hom-Semigroup = subset-image-hom-Semigroup pr2 image-hom-Semigroup = is-closed-under-multiplication-image-hom-Semigroup is-image-image-hom-Semigroup : is-image-hom-Semigroup G H f image-hom-Semigroup is-image-image-hom-Semigroup K = is-image-subtype-subset-image-hom-Semigroup (subset-Subsemigroup H K) contains-values-image-hom-Semigroup : (g : type-Semigroup G) → is-in-Subsemigroup H image-hom-Semigroup (map-hom-Semigroup G H f g) contains-values-image-hom-Semigroup = forward-implication ( is-image-image-hom-Semigroup image-hom-Semigroup) ( refl-leq-Subsemigroup H image-hom-Semigroup) leq-image-hom-Semigroup : {l : Level} (K : Subsemigroup l H) → ( ( g : type-Semigroup G) → is-in-Subsemigroup H K (map-hom-Semigroup G H f g)) → leq-Subsemigroup H image-hom-Semigroup K leq-image-hom-Semigroup K = backward-implication (is-image-image-hom-Semigroup K)
The image of a subsemigroup under a semigroup homomorphism
module _ {l1 l2 l3 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) (K : Subsemigroup l3 G) where subset-im-hom-Subsemigroup : subset-Semigroup (l1 ⊔ l2 ⊔ l3) H subset-im-hom-Subsemigroup = im-subtype (map-hom-Semigroup G H f) (subset-Subsemigroup G K) abstract is-closed-under-multiplication-im-hom-Subsemigroup : is-closed-under-multiplication-subset-Semigroup H subset-im-hom-Subsemigroup is-closed-under-multiplication-im-hom-Subsemigroup {x} {y} u v = apply-twice-universal-property-trunc-Prop u v ( subset-im-hom-Subsemigroup (mul-Semigroup H x y)) ( λ where ((x' , k) , refl) ((y' , l) , refl) → unit-trunc-Prop ( ( mul-Subsemigroup G K (x' , k) (y' , l)) , ( preserves-mul-hom-Semigroup G H f))) im-hom-Subsemigroup : Subsemigroup (l1 ⊔ l2 ⊔ l3) H pr1 im-hom-Subsemigroup = subset-im-hom-Subsemigroup pr2 im-hom-Subsemigroup = is-closed-under-multiplication-im-hom-Subsemigroup forward-implication-is-image-subsemigroup-im-hom-Subsemigroup : {l : Level} (U : Subsemigroup l H) → leq-Subsemigroup H im-hom-Subsemigroup U → leq-Subsemigroup G K (pullback-Subsemigroup G H f U) forward-implication-is-image-subsemigroup-im-hom-Subsemigroup U = forward-implication-adjoint-relation-image-pullback-subtype ( map-hom-Semigroup G H f) ( subset-Subsemigroup G K) ( subset-Subsemigroup H U) backward-implication-is-image-subsemigroup-im-hom-Subsemigroup : {l : Level} (U : Subsemigroup l H) → leq-Subsemigroup G K (pullback-Subsemigroup G H f U) → leq-Subsemigroup H im-hom-Subsemigroup U backward-implication-is-image-subsemigroup-im-hom-Subsemigroup U = backward-implication-adjoint-relation-image-pullback-subtype ( map-hom-Semigroup G H f) ( subset-Subsemigroup G K) ( subset-Subsemigroup H U) is-image-subsemigroup-im-hom-Subsemigroup : is-image-subsemigroup-hom-Semigroup G H f K im-hom-Subsemigroup is-image-subsemigroup-im-hom-Subsemigroup U = adjoint-relation-image-pullback-subtype ( map-hom-Semigroup G H f) ( subset-Subsemigroup G K) ( subset-Subsemigroup H U)
The image-pullback Galois connection on subsemigroups
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where preserves-order-im-hom-Subsemigroup : {l3 l4 : Level} (K : Subsemigroup l3 G) (L : Subsemigroup l4 G) → leq-Subsemigroup G K L → leq-Subsemigroup H ( im-hom-Subsemigroup G H f K) ( im-hom-Subsemigroup G H f L) preserves-order-im-hom-Subsemigroup K L = preserves-order-im-subtype ( map-hom-Semigroup G H f) ( subset-Subsemigroup G K) ( subset-Subsemigroup G L) im-hom-subsemigroup-hom-Large-Poset : hom-Large-Poset ( λ l → l1 ⊔ l2 ⊔ l) ( Subsemigroup-Large-Poset G) ( Subsemigroup-Large-Poset H) map-hom-Large-Preorder im-hom-subsemigroup-hom-Large-Poset = im-hom-Subsemigroup G H f preserves-order-hom-Large-Preorder im-hom-subsemigroup-hom-Large-Poset = preserves-order-im-hom-Subsemigroup image-pullback-galois-connection-Subsemigroup : galois-connection-Large-Poset ( λ l → l1 ⊔ l2 ⊔ l) ( λ l → l) ( Subsemigroup-Large-Poset G) ( Subsemigroup-Large-Poset H) lower-adjoint-galois-connection-Large-Poset image-pullback-galois-connection-Subsemigroup = im-hom-subsemigroup-hom-Large-Poset upper-adjoint-galois-connection-Large-Poset image-pullback-galois-connection-Subsemigroup = pullback-hom-large-poset-Subsemigroup G H f adjoint-relation-galois-connection-Large-Poset image-pullback-galois-connection-Subsemigroup K = is-image-subsemigroup-im-hom-Subsemigroup G H f K
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).