Seminormed real vector spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
{-# OPTIONS --lossy-unification #-} module linear-algebra.seminormed-real-vector-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.real-vector-spaces open import metric-spaces.pseudometric-spaces open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.saturation-inequality-nonnegative-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
A
seminorm¶
on a real vector space V is a
real-valued function p on the vector
space which is
- Triangular.
p(x + y) ≤ p(x) + p(y)for allxandyinV, and - Absolutely homogeneous.
p(c * x) = |c| * p(x)for all real numberscandxinV.
These conditions together imply that p(x) ≥ 0 for any x, and p(0) = 0.
A real vector space equipped with such a seminorm is called a
seminormed space¶.
A seminormed space has an induced
pseudometric structure defined by the
neighborhood relation that v and w are in an ε-neighborhood of each other
if p(v - w) ≤ ε.
Terminology. The term absolute homogeneity comes from the more general
concept of
homogeneous functions. A
multivariable function f on real vector spaces is said to be homogeneous of
degree k if for every scalar s we have that
f(sx₀,sx₁,…,sxₙ) = sᵏf(x₀,x₁,…,xₙ). In particular, you may note that any
homogeneous bilinear form must be homogeneous of degree one.
Definition
module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (p : type-ℝ-Vector-Space V → ℝ l1) where is-triangular-prop-seminorm-ℝ-Vector-Space : Prop (l1 ⊔ l2) is-triangular-prop-seminorm-ℝ-Vector-Space = Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → leq-prop-ℝ (p (add-ℝ-Vector-Space V x y)) (p x +ℝ p y))) is-triangular-seminorm-ℝ-Vector-Space : UU (l1 ⊔ l2) is-triangular-seminorm-ℝ-Vector-Space = type-Prop is-triangular-prop-seminorm-ℝ-Vector-Space is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space = Π-Prop ( ℝ l1) ( λ c → Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Id-Prop ( ℝ-Set l1) ( p (mul-ℝ-Vector-Space V c x)) ( abs-ℝ c *ℝ p x))) is-absolutely-homogeneous-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-absolutely-homogeneous-seminorm-ℝ-Vector-Space = type-Prop is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space is-seminorm-prop-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-seminorm-prop-ℝ-Vector-Space = is-triangular-prop-seminorm-ℝ-Vector-Space ∧ is-absolutely-homogeneous-prop-seminorm-ℝ-Vector-Space is-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-seminorm-ℝ-Vector-Space = type-Prop is-seminorm-prop-ℝ-Vector-Space seminorm-ℝ-Vector-Space : {l1 l2 : Level} → ℝ-Vector-Space l1 l2 → UU (lsuc l1 ⊔ l2) seminorm-ℝ-Vector-Space V = type-subtype (is-seminorm-prop-ℝ-Vector-Space V) Seminormed-ℝ-Vector-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Seminormed-ℝ-Vector-Space l1 l2 = Σ (ℝ-Vector-Space l1 l2) seminorm-ℝ-Vector-Space
Properties
Vector space properties
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where vector-space-Seminormed-ℝ-Vector-Space : ℝ-Vector-Space l1 l2 vector-space-Seminormed-ℝ-Vector-Space = pr1 V set-Seminormed-ℝ-Vector-Space : Set l2 set-Seminormed-ℝ-Vector-Space = set-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space type-Seminormed-ℝ-Vector-Space : UU l2 type-Seminormed-ℝ-Vector-Space = type-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space seminorm-Seminormed-ℝ-Vector-Space : seminorm-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space seminorm-Seminormed-ℝ-Vector-Space = pr2 V map-seminorm-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → ℝ l1 map-seminorm-Seminormed-ℝ-Vector-Space = pr1 seminorm-Seminormed-ℝ-Vector-Space zero-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space zero-Seminormed-ℝ-Vector-Space = zero-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space is-zero-prop-Seminormed-ℝ-Vector-Space : subtype l2 type-Seminormed-ℝ-Vector-Space is-zero-prop-Seminormed-ℝ-Vector-Space = is-zero-prop-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space is-zero-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → UU l2 is-zero-Seminormed-ℝ-Vector-Space = is-zero-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space add-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space add-Seminormed-ℝ-Vector-Space = add-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space mul-Seminormed-ℝ-Vector-Space : ℝ l1 → type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space mul-Seminormed-ℝ-Vector-Space = mul-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space neg-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space neg-Seminormed-ℝ-Vector-Space = neg-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space diff-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space diff-Seminormed-ℝ-Vector-Space v w = add-Seminormed-ℝ-Vector-Space v (neg-Seminormed-ℝ-Vector-Space w) right-inverse-law-add-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space) → add-Seminormed-ℝ-Vector-Space v (neg-Seminormed-ℝ-Vector-Space v) = zero-Seminormed-ℝ-Vector-Space right-inverse-law-add-Seminormed-ℝ-Vector-Space = right-inverse-law-add-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space add-diff-Seminormed-ℝ-Vector-Space : (v w x : type-Seminormed-ℝ-Vector-Space) → add-Seminormed-ℝ-Vector-Space ( diff-Seminormed-ℝ-Vector-Space v w) ( diff-Seminormed-ℝ-Vector-Space w x) = diff-Seminormed-ℝ-Vector-Space v x add-diff-Seminormed-ℝ-Vector-Space = add-diff-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space neg-neg-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space) → neg-Seminormed-ℝ-Vector-Space (neg-Seminormed-ℝ-Vector-Space v) = v neg-neg-Seminormed-ℝ-Vector-Space = neg-neg-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space left-zero-law-mul-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space) → mul-Seminormed-ℝ-Vector-Space (raise-ℝ l1 zero-ℝ) v = zero-Seminormed-ℝ-Vector-Space left-zero-law-mul-Seminormed-ℝ-Vector-Space = left-zero-law-mul-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space mul-neg-one-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space) → mul-Seminormed-ℝ-Vector-Space (neg-ℝ (raise-ℝ l1 one-ℝ)) v = neg-Seminormed-ℝ-Vector-Space v mul-neg-one-Seminormed-ℝ-Vector-Space = mul-neg-one-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space distributive-neg-diff-Seminormed-ℝ-Vector-Space : (v w : type-Seminormed-ℝ-Vector-Space) → neg-Seminormed-ℝ-Vector-Space (diff-Seminormed-ℝ-Vector-Space v w) = diff-Seminormed-ℝ-Vector-Space w v distributive-neg-diff-Seminormed-ℝ-Vector-Space = neg-right-subtraction-Ab ( ab-ℝ-Vector-Space vector-space-Seminormed-ℝ-Vector-Space) triangular-seminorm-Seminormed-ℝ-Vector-Space : (v w : type-Seminormed-ℝ-Vector-Space) → leq-ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space ( add-Seminormed-ℝ-Vector-Space v w)) ( map-seminorm-Seminormed-ℝ-Vector-Space v +ℝ map-seminorm-Seminormed-ℝ-Vector-Space w) triangular-seminorm-Seminormed-ℝ-Vector-Space = pr1 (pr2 seminorm-Seminormed-ℝ-Vector-Space) is-absolutely-homogeneous-seminorm-Seminormed-ℝ-Vector-Space : (c : ℝ l1) (v : type-Seminormed-ℝ-Vector-Space) → map-seminorm-Seminormed-ℝ-Vector-Space ( mul-Seminormed-ℝ-Vector-Space c v) = abs-ℝ c *ℝ map-seminorm-Seminormed-ℝ-Vector-Space v is-absolutely-homogeneous-seminorm-Seminormed-ℝ-Vector-Space = pr2 (pr2 seminorm-Seminormed-ℝ-Vector-Space) dist-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space → type-Seminormed-ℝ-Vector-Space → ℝ l1 dist-Seminormed-ℝ-Vector-Space v w = map-seminorm-Seminormed-ℝ-Vector-Space ( diff-Seminormed-ℝ-Vector-Space v w)
The seminorm of the zero vector is zero
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where abstract is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space : map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( zero-Seminormed-ℝ-Vector-Space V) = raise-ℝ l1 zero-ℝ is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space = equational-reasoning map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( zero-Seminormed-ℝ-Vector-Space V) = map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( mul-Seminormed-ℝ-Vector-Space ( V) ( raise-ℝ l1 zero-ℝ) ( zero-Seminormed-ℝ-Vector-Space V)) by ap ( map-seminorm-Seminormed-ℝ-Vector-Space V) ( inv (left-zero-law-mul-Seminormed-ℝ-Vector-Space V _)) = ( abs-ℝ (raise-ℝ l1 zero-ℝ)) *ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( zero-Seminormed-ℝ-Vector-Space V)) by is-absolutely-homogeneous-seminorm-Seminormed-ℝ-Vector-Space V _ _ = ( raise-ℝ l1 (abs-ℝ zero-ℝ)) *ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( zero-Seminormed-ℝ-Vector-Space V)) by ap-mul-ℝ (abs-raise-ℝ l1 _) refl = ( raise-zero-ℝ l1) *ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( zero-Seminormed-ℝ-Vector-Space V)) by ap-mul-ℝ (ap (raise-ℝ l1) abs-zero-ℝ) refl = raise-zero-ℝ l1 by left-raise-zero-law-mul-ℝ _ is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space V) → dist-Seminormed-ℝ-Vector-Space V v v = raise-ℝ l1 zero-ℝ is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space v = ( ap ( map-seminorm-Seminormed-ℝ-Vector-Space V) ( right-inverse-law-add-Seminormed-ℝ-Vector-Space V v)) ∙ ( is-zero-seminorm-zero-Seminormed-ℝ-Vector-Space) sim-zero-diagonal-dist-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space V) → sim-ℝ (dist-Seminormed-ℝ-Vector-Space V v v) zero-ℝ sim-zero-diagonal-dist-Seminormed-ℝ-Vector-Space v = inv-tr ( λ x → sim-ℝ x zero-ℝ) ( is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space v) ( sim-raise-ℝ' l1 zero-ℝ)
The seminorm of the negation of a vector is equal to the seminorm of the vector
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where abstract seminorm-neg-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space V) → map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( neg-Seminormed-ℝ-Vector-Space V v) = map-seminorm-Seminormed-ℝ-Vector-Space V v seminorm-neg-Seminormed-ℝ-Vector-Space v = equational-reasoning map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( neg-Seminormed-ℝ-Vector-Space V v) = map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( mul-Seminormed-ℝ-Vector-Space ( V) ( neg-ℝ (raise-ℝ l1 one-ℝ)) ( v)) by ap ( map-seminorm-Seminormed-ℝ-Vector-Space V) ( inv (mul-neg-one-Seminormed-ℝ-Vector-Space V v)) = ( abs-ℝ (neg-ℝ (raise-ℝ l1 one-ℝ))) *ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) by is-absolutely-homogeneous-seminorm-Seminormed-ℝ-Vector-Space V _ _ = ( abs-ℝ (raise-ℝ l1 one-ℝ)) *ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) by ap-mul-ℝ (abs-neg-ℝ _) refl = abs-ℝ one-ℝ *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v by eq-sim-ℝ ( preserves-sim-right-mul-ℝ _ _ _ ( preserves-sim-abs-ℝ (sim-raise-ℝ' l1 one-ℝ))) = one-ℝ *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v by ap-mul-ℝ (abs-real-ℝ⁺ one-ℝ⁺) refl = map-seminorm-Seminormed-ℝ-Vector-Space V v by left-unit-law-mul-ℝ _ commutative-dist-Seminormed-ℝ-Vector-Space : (v w : type-Seminormed-ℝ-Vector-Space V) → dist-Seminormed-ℝ-Vector-Space V v w = dist-Seminormed-ℝ-Vector-Space V w v commutative-dist-Seminormed-ℝ-Vector-Space v w = ( inv ( ap ( map-seminorm-Seminormed-ℝ-Vector-Space V) ( distributive-neg-diff-Seminormed-ℝ-Vector-Space V w v))) ∙ ( seminorm-neg-Seminormed-ℝ-Vector-Space _)
The distance function on a seminormed vector space satisfies the triangle inequality
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where abstract triangular-dist-Seminormed-ℝ-Vector-Space : (v w x : type-Seminormed-ℝ-Vector-Space V) → leq-ℝ ( dist-Seminormed-ℝ-Vector-Space V v x) ( dist-Seminormed-ℝ-Vector-Space V v w +ℝ dist-Seminormed-ℝ-Vector-Space V w x) triangular-dist-Seminormed-ℝ-Vector-Space v w x = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities dist-Seminormed-ℝ-Vector-Space V v x ≤ map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( add-Seminormed-ℝ-Vector-Space ( V) ( diff-Seminormed-ℝ-Vector-Space V v w) ( diff-Seminormed-ℝ-Vector-Space V w x)) by leq-eq-ℝ ( ap ( map-seminorm-Seminormed-ℝ-Vector-Space V) ( inv (add-diff-Seminormed-ℝ-Vector-Space V v w x))) ≤ ( dist-Seminormed-ℝ-Vector-Space V v w) +ℝ ( dist-Seminormed-ℝ-Vector-Space V w x) by triangular-seminorm-Seminormed-ℝ-Vector-Space V _ _
The seminorm of a vector is nonnegative
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where abstract is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space : (v : type-Seminormed-ℝ-Vector-Space V) → is-nonnegative-ℝ (map-seminorm-Seminormed-ℝ-Vector-Space V v) is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space v = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in reflects-leq-left-mul-ℝ⁺ ( positive-real-ℕ⁺ (2 , λ ())) ( zero-ℝ) ( map-seminorm-Seminormed-ℝ-Vector-Space V v) ( chain-of-inequalities real-ℕ 2 *ℝ zero-ℝ ≤ zero-ℝ by leq-sim-ℝ (right-zero-law-mul-ℝ _) ≤ dist-Seminormed-ℝ-Vector-Space V v v by leq-sim-ℝ ( symmetric-sim-ℝ ( sim-zero-diagonal-dist-Seminormed-ℝ-Vector-Space V v)) ≤ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) +ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space ( V) ( neg-Seminormed-ℝ-Vector-Space V v)) by triangular-seminorm-Seminormed-ℝ-Vector-Space V _ _ ≤ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) +ℝ ( map-seminorm-Seminormed-ℝ-Vector-Space V v) by leq-eq-ℝ ( ap-add-ℝ ( refl) ( seminorm-neg-Seminormed-ℝ-Vector-Space V v)) ≤ real-ℕ 2 *ℝ map-seminorm-Seminormed-ℝ-Vector-Space V v by leq-eq-ℝ (inv (left-mul-real-ℕ 2 _))) nonnegative-seminorm-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space V → ℝ⁰⁺ l1 nonnegative-seminorm-Seminormed-ℝ-Vector-Space v = ( map-seminorm-Seminormed-ℝ-Vector-Space V v , is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space v)
The pseudometric space induced by a seminorm
module _ {l1 l2 : Level} (V : Seminormed-ℝ-Vector-Space l1 l2) where nonnegative-dist-Seminormed-ℝ-Vector-Space : type-Seminormed-ℝ-Vector-Space V → type-Seminormed-ℝ-Vector-Space V → ℝ⁰⁺ l1 nonnegative-dist-Seminormed-ℝ-Vector-Space v w = ( dist-Seminormed-ℝ-Vector-Space V v w , is-nonnegative-seminorm-Seminormed-ℝ-Vector-Space V _) neighborhood-prop-Seminormed-ℝ-Vector-Space : ℚ⁺ → Relation-Prop l1 (type-Seminormed-ℝ-Vector-Space V) neighborhood-prop-Seminormed-ℝ-Vector-Space ε v w = leq-prop-ℝ ( dist-Seminormed-ℝ-Vector-Space V v w) ( real-ℚ⁺ ε) neighborhood-Seminormed-ℝ-Vector-Space : ℚ⁺ → Relation l1 (type-Seminormed-ℝ-Vector-Space V) neighborhood-Seminormed-ℝ-Vector-Space d = type-Relation-Prop (neighborhood-prop-Seminormed-ℝ-Vector-Space d) abstract refl-neighborhood-Seminormed-ℝ-Vector-Space : (ε : ℚ⁺) (v : type-Seminormed-ℝ-Vector-Space V) → neighborhood-Seminormed-ℝ-Vector-Space ε v v refl-neighborhood-Seminormed-ℝ-Vector-Space ε v = leq-le-ℝ ( preserves-le-left-sim-ℝ ( real-ℚ⁺ ε) ( zero-ℝ) ( dist-Seminormed-ℝ-Vector-Space V v v) ( symmetric-sim-ℝ ( sim-zero-diagonal-dist-Seminormed-ℝ-Vector-Space V v)) ( preserves-is-positive-real-ℚ (is-positive-rational-ℚ⁺ ε))) symmetric-neighborhood-Seminormed-ℝ-Vector-Space : (d : ℚ⁺) (v w : type-Seminormed-ℝ-Vector-Space V) → neighborhood-Seminormed-ℝ-Vector-Space d v w → neighborhood-Seminormed-ℝ-Vector-Space d w v symmetric-neighborhood-Seminormed-ℝ-Vector-Space d v w = tr ( λ z → leq-ℝ z (real-ℚ⁺ d)) ( commutative-dist-Seminormed-ℝ-Vector-Space V v w) triangular-neighborhood-Seminormed-ℝ-Vector-Space : (v w x : type-Seminormed-ℝ-Vector-Space V) (d1 d2 : ℚ⁺) → neighborhood-Seminormed-ℝ-Vector-Space d2 w x → neighborhood-Seminormed-ℝ-Vector-Space d1 v w → neighborhood-Seminormed-ℝ-Vector-Space (d1 +ℚ⁺ d2) v x triangular-neighborhood-Seminormed-ℝ-Vector-Space v w x d1 d2 Nd2wx Nd1vw = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities dist-Seminormed-ℝ-Vector-Space V v x ≤ ( dist-Seminormed-ℝ-Vector-Space V v w) +ℝ ( dist-Seminormed-ℝ-Vector-Space V w x) by triangular-dist-Seminormed-ℝ-Vector-Space V v w x ≤ real-ℚ⁺ d1 +ℝ real-ℚ⁺ d2 by preserves-leq-add-ℝ Nd1vw Nd2wx ≤ real-ℚ⁺ (d1 +ℚ⁺ d2) by leq-eq-ℝ (add-real-ℚ _ _) saturated-neighborhood-Seminormed-ℝ-Vector-Space : (d : ℚ⁺) (v w : type-Seminormed-ℝ-Vector-Space V) → ((δ : ℚ⁺) → neighborhood-Seminormed-ℝ-Vector-Space (d +ℚ⁺ δ) v w) → neighborhood-Seminormed-ℝ-Vector-Space d v w saturated-neighborhood-Seminormed-ℝ-Vector-Space d v w H = saturated-leq-ℝ⁰⁺ ( nonnegative-dist-Seminormed-ℝ-Vector-Space v w) ( nonnegative-real-ℚ⁺ d) ( λ δ → inv-tr ( leq-ℝ (dist-Seminormed-ℝ-Vector-Space V v w)) ( add-real-ℚ _ _) ( H δ)) pseudometric-structure-Seminormed-ℝ-Vector-Space : Pseudometric-Structure l1 (type-Seminormed-ℝ-Vector-Space V) pseudometric-structure-Seminormed-ℝ-Vector-Space = ( neighborhood-prop-Seminormed-ℝ-Vector-Space , refl-neighborhood-Seminormed-ℝ-Vector-Space , symmetric-neighborhood-Seminormed-ℝ-Vector-Space , triangular-neighborhood-Seminormed-ℝ-Vector-Space , saturated-neighborhood-Seminormed-ℝ-Vector-Space) pseudometric-space-Seminormed-ℝ-Vector-Space : Pseudometric-Space l2 l1 pseudometric-space-Seminormed-ℝ-Vector-Space = ( type-Seminormed-ℝ-Vector-Space V , pseudometric-structure-Seminormed-ℝ-Vector-Space)
The real numbers are a seminormed vector space over themselves with seminorm x ↦ |x|
seminormed-real-vector-space-ℝ : (l : Level) → Seminormed-ℝ-Vector-Space l (lsuc l) seminormed-real-vector-space-ℝ l = ( real-vector-space-ℝ l , abs-ℝ , triangle-inequality-abs-ℝ , abs-mul-ℝ)
External links
- Seminorm at Wikidata
- Seminormed space at Wikidata
Recent changes
- 2025-11-26. Louis Wasserman. Normed real vector spaces (#1704).