Functoriality of the type of finite sequences

Content created by Louis Wasserman.

Created on 2025-05-14.
Last modified on 2025-05-14.

module lists.functoriality-finite-sequences where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-binary-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.postcomposition-functions
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import lists.finite-sequences

open import univalent-combinatorics.standard-finite-types

Idea

Any map f : A → B determines a map between finite sequences fin-sequence A n → fin-sequence B n for every n.

Definition

Functoriality of the type of finite sequences

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  map-fin-sequence :
    (n : )  (A  B)  fin-sequence A n  fin-sequence B n
  map-fin-sequence n f v = f  v

  htpy-fin-sequence :
    (n : ) {f g : A  B}  (f ~ g) 
    map-fin-sequence n f ~ map-fin-sequence n g
  htpy-fin-sequence n = htpy-postcomp (Fin n)

Binary functoriality of the type of finite sequences

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3}
  where

  binary-map-fin-sequence :
    (n : )  (A  B  C) 
    fin-sequence A n  fin-sequence B n  fin-sequence C n
  binary-map-fin-sequence n f v w i = f (v i) (w i)

Recent changes