Uniformly continuous maps between metric spaces
Content created by Louis Wasserman and Fredrik Bakke.
Created on 2026-01-01.
Last modified on 2026-01-10.
module metric-spaces.uniformly-continuous-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import lists.sequences open import logic.functoriality-existential-quantification open import metric-spaces.continuity-of-maps-at-points-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.modulated-uniformly-continuous-maps-metric-spaces open import metric-spaces.pointwise-continuous-maps-metric-spaces open import metric-spaces.sequences-metric-spaces open import metric-spaces.short-maps-metric-spaces
Idea
A map f between
metric spaces X and Y is
uniformly continuous¶
if there exists a
modulus of uniform continuity
for it.
Definitions
The property of being a uniformly continuous map
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) where is-uniformly-continuous-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-uniformly-continuous-prop-map-Metric-Space = is-inhabited-Prop ( modulus-of-uniform-continuity-map-Metric-Space X Y f) is-uniformly-continuous-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-uniformly-continuous-map-Metric-Space = type-Prop is-uniformly-continuous-prop-map-Metric-Space
The type of uniformly continuous maps between metric spaces
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) where uniformly-continuous-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) uniformly-continuous-map-Metric-Space = type-subtype (is-uniformly-continuous-prop-map-Metric-Space X Y) map-uniformly-continuous-map-Metric-Space : uniformly-continuous-map-Metric-Space → map-Metric-Space X Y map-uniformly-continuous-map-Metric-Space = pr1 is-uniformly-continuous-map-uniformly-continuous-map-Metric-Space : (f : uniformly-continuous-map-Metric-Space) → is-uniformly-continuous-map-Metric-Space ( X) ( Y) ( map-uniformly-continuous-map-Metric-Space f) is-uniformly-continuous-map-uniformly-continuous-map-Metric-Space = pr2 uniformly-continuous-map-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space X Y → uniformly-continuous-map-Metric-Space uniformly-continuous-map-modulated-ucont-map-Metric-Space (f , m) = (f , unit-trunc-Prop m)
Properties
The identity map is uniformly continuous
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where is-uniformly-continuous-map-id-Metric-Space : is-uniformly-continuous-map-Metric-Space X X id is-uniformly-continuous-map-id-Metric-Space = intro-exists id (λ _ _ _ → id)
The composition of uniformly continuous maps is uniformly continuous
module _ {l1 l2 l3 l4 l5 l6 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (Z : Metric-Space l5 l6) where abstract is-uniformly-continuous-map-comp-Metric-Space : (g : map-Metric-Space Y Z) → (f : map-Metric-Space X Y) → is-uniformly-continuous-map-Metric-Space Y Z g → is-uniformly-continuous-map-Metric-Space X Y f → is-uniformly-continuous-map-Metric-Space X Z (g ∘ f) is-uniformly-continuous-map-comp-Metric-Space g f = map-binary-trunc-Prop ( λ μg μf → pr2 (comp-modulated-ucont-map-Metric-Space X Y Z (g , μg) (f , μf))) comp-uniformly-continuous-map-Metric-Space : uniformly-continuous-map-Metric-Space Y Z → uniformly-continuous-map-Metric-Space X Y → uniformly-continuous-map-Metric-Space X Z comp-uniformly-continuous-map-Metric-Space g f = ( map-uniformly-continuous-map-Metric-Space Y Z g ∘ map-uniformly-continuous-map-Metric-Space X Y f) , ( is-uniformly-continuous-map-comp-Metric-Space ( map-uniformly-continuous-map-Metric-Space Y Z g) ( map-uniformly-continuous-map-Metric-Space X Y f) ( is-uniformly-continuous-map-uniformly-continuous-map-Metric-Space ( Y) ( Z) ( g)) ( is-uniformly-continuous-map-uniformly-continuous-map-Metric-Space ( X) ( Y) ( f)))
Short maps are uniformly continuous
module _ {l1 l2 l3 l4 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) where abstract is-uniformly-continuous-map-is-short-map-Metric-Space : (f : map-Metric-Space A B) → is-short-map-Metric-Space A B f → is-uniformly-continuous-map-Metric-Space A B f is-uniformly-continuous-map-is-short-map-Metric-Space f H = intro-exists id (λ x d → H d x) uniformly-continuous-map-short-map-Metric-Space : short-map-Metric-Space A B → uniformly-continuous-map-Metric-Space A B uniformly-continuous-map-short-map-Metric-Space = tot is-uniformly-continuous-map-is-short-map-Metric-Space
Isometries are uniformly continuous
module _ {l1 l2 l3 l4 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) where abstract is-uniformly-continuous-map-is-isometry-Metric-Space : (f : map-Metric-Space A B) → is-isometry-Metric-Space A B f → is-uniformly-continuous-map-Metric-Space A B f is-uniformly-continuous-map-is-isometry-Metric-Space f = is-uniformly-continuous-map-is-short-map-Metric-Space A B f ∘ is-short-map-is-isometry-Metric-Space A B f uniformly-continuous-map-isometry-Metric-Space : isometry-Metric-Space A B → uniformly-continuous-map-Metric-Space A B uniformly-continuous-map-isometry-Metric-Space = tot is-uniformly-continuous-map-is-isometry-Metric-Space
Uniformly continuous maps are pointwise continuous
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) where abstract is-pointwise-continuous-map-is-uniformly-continuous-map-Metric-Space : (f : map-Metric-Space X Y) → is-uniformly-continuous-map-Metric-Space X Y f → is-pointwise-continuous-map-Metric-Space X Y f is-pointwise-continuous-map-is-uniformly-continuous-map-Metric-Space f H x = map-trunc-Prop (λ (μ , is-mod-μ) → (μ , is-mod-μ x)) H pointwise-continuous-map-uniformly-continuous-map-Metric-Space : uniformly-continuous-map-Metric-Space X Y → pointwise-continuous-map-Metric-Space X Y pointwise-continuous-map-uniformly-continuous-map-Metric-Space (f , H) = ( f , is-pointwise-continuous-map-is-uniformly-continuous-map-Metric-Space f H)
The action on sequences of uniformly continuous maps
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : uniformly-continuous-map-Metric-Space X Y) where map-sequence-uniformly-continuous-map-Metric-Space : sequence-type-Metric-Space X → sequence-type-Metric-Space Y map-sequence-uniformly-continuous-map-Metric-Space = map-sequence (map-uniformly-continuous-map-Metric-Space X Y f)
See also
External links
- Uniform continuity at Wikidata
Recent changes
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).