Equivalences of H-spaces
Content created by Egbert Rijke.
Created on 2024-03-23.
Last modified on 2024-03-23.
module structured-types.equivalences-h-spaces where
Imports
open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-identifications open import foundation.commuting-triangles-of-identifications open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.path-algebra open import foundation.universe-levels open import foundation.whiskering-identifications-concatenation open import group-theory.homomorphisms-semigroups open import structured-types.h-spaces open import structured-types.morphisms-h-spaces open import structured-types.pointed-equivalences open import structured-types.pointed-maps open import structured-types.pointed-types
Idea
Consider two H-spaces X
and Y
. An
equivalence of H-spaces¶ from X
to Y
consists of a pointed equivalence
e : X ≃∗ Y
that preserves the unital binary operation
α : (x x' : X) → e (μ x x') = μ (e x) (e x')
and which furthermore comes equipped with the following structure, witnessing that the unit laws are preserved:
-
For each
x' : X
an identificationα₁ x'
witnessing that the triangleα * x' e (μ * x') -------> μ (e *) (e x') \ / \ / ap (μ - (e x')) e₁ \ / \ ∨ ap e (left-unit-law x') \ μ * (e x') \ / \ / left-unit-law (e x') \ / ∨ ∨ e x'
commutes.
-
For each
x : X
an identificationα₂ x
witnessing that the triangleα x * e (μ x *) --------> μ (e x) (e *) \ / \ / ap (μ (e x) -) e₁ \ / \ ∨ ap e (right-unit-law x) \ μ (e x) * \ / \ / right-unit-law (e x) \ / ∨ ∨ e x
commutes.
-
An identification
α₃
witnessing that the squareα₁ α₀ * * ∙ (ap (μ - (e *)) e₁ ∙ left-unit-law *) ---> ap e (left-unit-law *) | | (α₀ * *) ·l β | | ∨ ∨ α₀ * * ∙ (ap (μ (e *) -) e₁ ∙ right-unit-law *) ---> ap e (right-unit-law *) α₂
Here, the identification on the left is obtained by left whiskering the identification witnessing that the square
ap (μ (e *)) e₁ μ (e *) (e *) -----------------> μ (e *) * | | ap (μ - (e *)) e₁ | β | right-unit-law (e *) ∨ ∨ μ * (e *) ----------------------> e * left-unit-law (e *)
commutes, with the identification
α * * : e (μ * *) = μ (e *) (e *)
. The quickest way to see that this square commutes is by identification elimination on the identificatione₁ : e * = *
, using the coherenceleft-unit-law * = right-unit-law *
. Alternatively, note that all the squares in the diagramap (μ (e *)) e₁ μ (e *) (e *) -----------------> μ (e *) * --------> e * | | | ap (μ - (e *)) e₁ | ap (μ - *) e₁ | | ∨ ∨ ∨ μ * (e *) ---------------------> μ * * ----------> * | ap (μ *) e₁ | | | | coh ·r refl | refl ∨ ∨ ∨ e * ---------------------------> * ------------> * e₁ refl
commute. Therefore we obtain an identification
ap (μ - (e *)) e₁ ∙ (left-unit-law (e *) ∙ e₁) = ap (μ (e *) -) e₁ ∙ (right-unit-law (e *) ∙ e₁).
By unwhiskering of commuting squares of identifications, i.e., by cancelling out
e₁
on both sides, it follows that the asserted square commutes.
Definition
The predicate of preserving H-space structure on a pointed type
module _ {l1 l2 : Level} (M : H-Space l1) (N : H-Space l2) where preserves-mul-pointed-equiv-H-Space : (pointed-type-H-Space M ≃∗ pointed-type-H-Space N) → UU (l1 ⊔ l2) preserves-mul-pointed-equiv-H-Space e = preserves-mul-pointed-map-H-Space M N (pointed-map-pointed-equiv e) preserves-left-unit-law-mul-pointed-equiv-H-Space : (e : pointed-type-H-Space M ≃∗ pointed-type-H-Space N) → preserves-mul-pointed-equiv-H-Space e → UU (l1 ⊔ l2) preserves-left-unit-law-mul-pointed-equiv-H-Space e = preserves-left-unit-law-mul-pointed-map-H-Space M N ( pointed-map-pointed-equiv e) preserves-right-unit-law-mul-pointed-equiv-H-Space : (e : pointed-type-H-Space M ≃∗ pointed-type-H-Space N) → preserves-mul-pointed-equiv-H-Space e → UU (l1 ⊔ l2) preserves-right-unit-law-mul-pointed-equiv-H-Space e = preserves-right-unit-law-mul-pointed-map-H-Space M N ( pointed-map-pointed-equiv e) preserves-coherence-unit-laws-mul-pointed-equiv-H-Space : (e : pointed-type-H-Space M ≃∗ pointed-type-H-Space N) → (μ : preserves-mul-pointed-equiv-H-Space e) → (ν : preserves-left-unit-law-mul-pointed-equiv-H-Space e μ) → (ρ : preserves-right-unit-law-mul-pointed-equiv-H-Space e μ) → UU l2 preserves-coherence-unit-laws-mul-pointed-equiv-H-Space e = preserves-coherence-unit-laws-mul-pointed-map-H-Space M N ( pointed-map-pointed-equiv e) preserves-unital-mul-pointed-equiv-H-Space : (e : pointed-type-H-Space M ≃∗ pointed-type-H-Space N) → UU (l1 ⊔ l2) preserves-unital-mul-pointed-equiv-H-Space e = preserves-unital-mul-pointed-map-H-Space M N (pointed-map-pointed-equiv e)
Equivalences of H-spaces
module _ {l1 l2 : Level} (M : H-Space l1) (N : H-Space l2) where equiv-H-Space : UU (l1 ⊔ l2) equiv-H-Space = Σ ( pointed-type-H-Space M ≃∗ pointed-type-H-Space N) ( preserves-unital-mul-pointed-equiv-H-Space M N) module _ {l1 l2 : Level} {M : H-Space l1} {N : H-Space l2} (e : equiv-H-Space M N) where pointed-equiv-equiv-H-Space : pointed-type-H-Space M ≃∗ pointed-type-H-Space N pointed-equiv-equiv-H-Space = pr1 e map-equiv-H-Space : type-H-Space M → type-H-Space N map-equiv-H-Space = map-pointed-equiv pointed-equiv-equiv-H-Space preserves-unit-equiv-H-Space : map-equiv-H-Space (unit-H-Space M) = unit-H-Space N preserves-unit-equiv-H-Space = preserves-point-pointed-equiv pointed-equiv-equiv-H-Space preserves-unital-mul-equiv-H-Space : preserves-unital-mul-pointed-equiv-H-Space M N pointed-equiv-equiv-H-Space preserves-unital-mul-equiv-H-Space = pr2 e preserves-mul-equiv-H-Space : preserves-mul-pointed-equiv-H-Space M N pointed-equiv-equiv-H-Space preserves-mul-equiv-H-Space = pr1 preserves-unital-mul-equiv-H-Space preserves-left-unit-law-mul-equiv-H-Space : preserves-left-unit-law-mul-pointed-equiv-H-Space M N ( pointed-equiv-equiv-H-Space) ( preserves-mul-equiv-H-Space) preserves-left-unit-law-mul-equiv-H-Space = pr1 (pr2 preserves-unital-mul-equiv-H-Space) preserves-right-unit-law-mul-equiv-H-Space : preserves-right-unit-law-mul-pointed-equiv-H-Space M N ( pointed-equiv-equiv-H-Space) ( preserves-mul-equiv-H-Space) preserves-right-unit-law-mul-equiv-H-Space = pr1 (pr2 (pr2 preserves-unital-mul-equiv-H-Space)) preserves-coherence-unit-laws-mul-equiv-H-Space : preserves-coherence-unit-laws-mul-pointed-equiv-H-Space M N ( pointed-equiv-equiv-H-Space) ( preserves-mul-equiv-H-Space) ( preserves-left-unit-law-mul-equiv-H-Space) ( preserves-right-unit-law-mul-equiv-H-Space) preserves-coherence-unit-laws-mul-equiv-H-Space = pr2 (pr2 (pr2 preserves-unital-mul-equiv-H-Space))
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).