Functors between precategories

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Fernando Chu and Elisabeth Stenholm.

Created on 2022-03-11.
Last modified on 2024-09-01.

module category-theory.functors-precategories where
Imports
open import category-theory.functors-set-magmoids
open import category-theory.isomorphisms-in-precategories
open import category-theory.maps-precategories
open import category-theory.opposite-precategories
open import category-theory.precategories

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels

Idea

A functor from a precategory C to a precategory D consists of:

  • a map F₀ : C → D on objects,
  • a map F₁ : hom x y → hom (F₀ x) (F₀ y) on morphisms, such that the following identities hold:
  • F₁ id_x = id_(F₀ x),
  • F₁ (g ∘ f) = F₁ g ∘ F₁ f.

Definition

The predicate on maps between precategories of being a functor

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  (F : map-Precategory C D)
  where

  preserves-comp-hom-prop-map-Precategory : Prop (l1  l2  l4)
  preserves-comp-hom-prop-map-Precategory =
    preserves-comp-hom-prop-map-Set-Magmoid
      ( set-magmoid-Precategory C)
      ( set-magmoid-Precategory D)
      (F)

  preserves-comp-hom-map-Precategory : UU (l1  l2  l4)
  preserves-comp-hom-map-Precategory =
    type-Prop preserves-comp-hom-prop-map-Precategory

  is-prop-preserves-comp-hom-map-Precategory :
    is-prop preserves-comp-hom-map-Precategory
  is-prop-preserves-comp-hom-map-Precategory =
    is-prop-type-Prop preserves-comp-hom-prop-map-Precategory

  preserves-id-hom-map-Precategory : UU (l1  l4)
  preserves-id-hom-map-Precategory =
    (x : obj-Precategory C) 
    ( hom-map-Precategory C D F (id-hom-Precategory C {x})) 
    ( id-hom-Precategory D {obj-map-Precategory C D F x})

  is-prop-preserves-id-hom-map-Precategory :
    is-prop preserves-id-hom-map-Precategory
  is-prop-preserves-id-hom-map-Precategory =
    is-prop-Π
      ( λ x 
        is-set-hom-Precategory D
          ( obj-map-Precategory C D F x)
          ( obj-map-Precategory C D F x)
          ( hom-map-Precategory C D F (id-hom-Precategory C {x}))
          ( id-hom-Precategory D {obj-map-Precategory C D F x}))

  preserves-id-hom-prop-map-Precategory : Prop (l1  l4)
  pr1 preserves-id-hom-prop-map-Precategory =
    preserves-id-hom-map-Precategory
  pr2 preserves-id-hom-prop-map-Precategory =
    is-prop-preserves-id-hom-map-Precategory

  is-functor-prop-map-Precategory : Prop (l1  l2  l4)
  is-functor-prop-map-Precategory =
    product-Prop
      preserves-comp-hom-prop-map-Precategory
      preserves-id-hom-prop-map-Precategory

  is-functor-map-Precategory : UU (l1  l2  l4)
  is-functor-map-Precategory = type-Prop is-functor-prop-map-Precategory

  is-prop-is-functor-map-Precategory :
    is-prop is-functor-map-Precategory
  is-prop-is-functor-map-Precategory =
    is-prop-type-Prop is-functor-prop-map-Precategory

  preserves-comp-is-functor-map-Precategory :
    is-functor-map-Precategory  preserves-comp-hom-map-Precategory
  preserves-comp-is-functor-map-Precategory = pr1

  preserves-id-is-functor-map-Precategory :
    is-functor-map-Precategory  preserves-id-hom-map-Precategory
  preserves-id-is-functor-map-Precategory = pr2

Functors between precategories

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  where

  functor-Precategory : UU (l1  l2  l3  l4)
  functor-Precategory =
    Σ ( obj-Precategory C  obj-Precategory D)
      ( λ F₀ 
        Σ ( {x y : obj-Precategory C}
            (f : hom-Precategory C x y) 
            hom-Precategory D (F₀ x) (F₀ y))
          ( λ F₁  is-functor-map-Precategory C D (F₀ , F₁)))

  obj-functor-Precategory :
    functor-Precategory  obj-Precategory C  obj-Precategory D
  obj-functor-Precategory = pr1

  hom-functor-Precategory :
    (F : functor-Precategory) 
    {x y : obj-Precategory C} 
    (f : hom-Precategory C x y) 
    hom-Precategory D
      ( obj-functor-Precategory F x)
      ( obj-functor-Precategory F y)
  hom-functor-Precategory F = pr1 (pr2 F)

  map-functor-Precategory : functor-Precategory  map-Precategory C D
  pr1 (map-functor-Precategory F) = obj-functor-Precategory F
  pr2 (map-functor-Precategory F) = hom-functor-Precategory F

  is-functor-functor-Precategory :
    (F : functor-Precategory) 
    is-functor-map-Precategory C D (map-functor-Precategory F)
  is-functor-functor-Precategory = pr2  pr2

  preserves-comp-functor-Precategory :
    (F : functor-Precategory) {x y z : obj-Precategory C}
    (g : hom-Precategory C y z) (f : hom-Precategory C x y) 
    ( hom-functor-Precategory F (comp-hom-Precategory C g f)) 
    ( comp-hom-Precategory D
      ( hom-functor-Precategory F g)
      ( hom-functor-Precategory F f))
  preserves-comp-functor-Precategory F =
    preserves-comp-is-functor-map-Precategory C D
      ( map-functor-Precategory F)
      ( is-functor-functor-Precategory F)

  preserves-id-functor-Precategory :
    (F : functor-Precategory) (x : obj-Precategory C) 
    ( hom-functor-Precategory F (id-hom-Precategory C {x})) 
    ( id-hom-Precategory D {obj-functor-Precategory F x})
  preserves-id-functor-Precategory F =
    preserves-id-is-functor-map-Precategory C D
      ( map-functor-Precategory F)
      ( is-functor-functor-Precategory F)

  functor-map-Precategory :
    (F : map-Precategory C D) 
    is-functor-map-Precategory C D F 
    functor-Precategory
  pr1 (functor-map-Precategory F is-functor-F) =
    obj-map-Precategory C D F
  pr1 (pr2 (functor-map-Precategory F is-functor-F)) =
    hom-map-Precategory C D F
  pr2 (pr2 (functor-map-Precategory F is-functor-F)) =
    is-functor-F

Examples

The identity functor

There is an identity functor on any precategory.

id-functor-Precategory :
  {l1 l2 : Level} (C : Precategory l1 l2)  functor-Precategory C C
pr1 (id-functor-Precategory C) = id
pr1 (pr2 (id-functor-Precategory C)) = id
pr1 (pr2 (pr2 (id-functor-Precategory C))) g f = refl
pr2 (pr2 (pr2 (id-functor-Precategory C))) x = refl

Composition of functors

Any two compatible functors can be composed to a new functor.

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (A : Precategory l1 l2) (B : Precategory l3 l4) (C : Precategory l5 l6)
  (G : functor-Precategory B C) (F : functor-Precategory A B)
  where

  obj-comp-functor-Precategory : obj-Precategory A  obj-Precategory C
  obj-comp-functor-Precategory =
    obj-functor-Precategory B C G  obj-functor-Precategory A B F

  hom-comp-functor-Precategory :
    {x y : obj-Precategory A} 
    hom-Precategory A x y 
    hom-Precategory C
      ( obj-comp-functor-Precategory x)
      ( obj-comp-functor-Precategory y)
  hom-comp-functor-Precategory =
    hom-functor-Precategory B C G  hom-functor-Precategory A B F

  map-comp-functor-Precategory : map-Precategory A C
  pr1 map-comp-functor-Precategory = obj-comp-functor-Precategory
  pr2 map-comp-functor-Precategory = hom-comp-functor-Precategory

  preserves-comp-comp-functor-Precategory :
    preserves-comp-hom-map-Precategory A C map-comp-functor-Precategory
  preserves-comp-comp-functor-Precategory g f =
    ( ap
      ( hom-functor-Precategory B C G)
      ( preserves-comp-functor-Precategory A B F g f)) 
    ( preserves-comp-functor-Precategory B C G
      ( hom-functor-Precategory A B F g)
      ( hom-functor-Precategory A B F f))

  preserves-id-comp-functor-Precategory :
    preserves-id-hom-map-Precategory A C map-comp-functor-Precategory
  preserves-id-comp-functor-Precategory x =
    ( ap
      ( hom-functor-Precategory B C G)
      ( preserves-id-functor-Precategory A B F x)) 
    ( preserves-id-functor-Precategory B C G
      ( obj-functor-Precategory A B F x))

  comp-functor-Precategory : functor-Precategory A C
  pr1 comp-functor-Precategory = obj-comp-functor-Precategory
  pr1 (pr2 comp-functor-Precategory) =
    hom-functor-Precategory B C G  hom-functor-Precategory A B F
  pr1 (pr2 (pr2 comp-functor-Precategory)) =
    preserves-comp-comp-functor-Precategory
  pr2 (pr2 (pr2 comp-functor-Precategory)) =
    preserves-id-comp-functor-Precategory

Properties

Extensionality of functors between precategories

Equality of functors is equality of underlying maps

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  (F G : functor-Precategory C D)
  where

  equiv-eq-map-eq-functor-Precategory :
    (F  G)  (map-functor-Precategory C D F  map-functor-Precategory C D G)
  equiv-eq-map-eq-functor-Precategory =
    equiv-ap-emb
      ( comp-emb
        ( emb-subtype (is-functor-prop-map-Precategory C D))
        ( emb-equiv
          ( inv-associative-Σ
            ( obj-Precategory C  obj-Precategory D)
            ( λ F₀ 
              { x y : obj-Precategory C} 
              hom-Precategory C x y 
              hom-Precategory D (F₀ x) (F₀ y))
            ( pr1  is-functor-prop-map-Precategory C D))))

  eq-map-eq-functor-Precategory :
    (F  G)  (map-functor-Precategory C D F  map-functor-Precategory C D G)
  eq-map-eq-functor-Precategory =
    map-equiv equiv-eq-map-eq-functor-Precategory

  eq-eq-map-functor-Precategory :
    (map-functor-Precategory C D F  map-functor-Precategory C D G)  (F  G)
  eq-eq-map-functor-Precategory =
    map-inv-equiv equiv-eq-map-eq-functor-Precategory

  is-section-eq-eq-map-functor-Precategory :
    eq-map-eq-functor-Precategory  eq-eq-map-functor-Precategory ~ id
  is-section-eq-eq-map-functor-Precategory =
    is-section-map-inv-equiv equiv-eq-map-eq-functor-Precategory

  is-retraction-eq-eq-map-functor-Precategory :
    eq-eq-map-functor-Precategory  eq-map-eq-functor-Precategory ~ id
  is-retraction-eq-eq-map-functor-Precategory =
    is-retraction-map-inv-equiv equiv-eq-map-eq-functor-Precategory

Equality of functors is homotopy of underlying maps

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  (F G : functor-Precategory C D)
  where

  htpy-functor-Precategory : UU (l1  l2  l3  l4)
  htpy-functor-Precategory =
    htpy-map-Precategory C D
      ( map-functor-Precategory C D F)
      ( map-functor-Precategory C D G)

  equiv-htpy-eq-functor-Precategory : (F  G)  htpy-functor-Precategory
  equiv-htpy-eq-functor-Precategory =
    ( equiv-htpy-eq-map-Precategory C D
      ( map-functor-Precategory C D F)
      ( map-functor-Precategory C D G)) ∘e
    ( equiv-eq-map-eq-functor-Precategory C D F G)

  htpy-eq-functor-Precategory : F  G  htpy-functor-Precategory
  htpy-eq-functor-Precategory =
    map-equiv equiv-htpy-eq-functor-Precategory

  eq-htpy-functor-Precategory : htpy-functor-Precategory  F  G
  eq-htpy-functor-Precategory =
    map-inv-equiv equiv-htpy-eq-functor-Precategory

  is-section-eq-htpy-functor-Precategory :
    htpy-eq-functor-Precategory  eq-htpy-functor-Precategory ~ id
  is-section-eq-htpy-functor-Precategory =
    is-section-map-inv-equiv equiv-htpy-eq-functor-Precategory

  is-retraction-eq-htpy-functor-Precategory :
    eq-htpy-functor-Precategory  htpy-eq-functor-Precategory ~ id
  is-retraction-eq-htpy-functor-Precategory =
    is-retraction-map-inv-equiv equiv-htpy-eq-functor-Precategory

Functors preserve isomorphisms

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  (F : functor-Precategory C D)
  {x y : obj-Precategory C}
  where

  hom-inv-preserves-is-iso-functor-Precategory :
    (f : hom-Precategory C x y) 
    is-iso-Precategory C f 
    hom-Precategory D
      ( obj-functor-Precategory C D F y)
      ( obj-functor-Precategory C D F x)
  hom-inv-preserves-is-iso-functor-Precategory f is-iso-f =
    hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f)

  is-right-inv-preserves-is-iso-functor-Precategory :
    (f : hom-Precategory C x y) 
    (is-iso-f : is-iso-Precategory C f) 
    comp-hom-Precategory D
      ( hom-functor-Precategory C D F f)
      ( hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f)) 
    id-hom-Precategory D
  is-right-inv-preserves-is-iso-functor-Precategory f is-iso-f =
    ( inv
      ( preserves-comp-functor-Precategory C D F
        ( f)
        ( hom-inv-is-iso-Precategory C is-iso-f))) 
    ( ap
      ( hom-functor-Precategory C D F)
      ( is-section-hom-inv-is-iso-Precategory C is-iso-f)) 
    ( preserves-id-functor-Precategory C D F y)

  is-left-inv-preserves-is-iso-functor-Precategory :
    (f : hom-Precategory C x y) 
    (is-iso-f : is-iso-Precategory C f) 
    comp-hom-Precategory D
      ( hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f))
      ( hom-functor-Precategory C D F f) 
    id-hom-Precategory D
  is-left-inv-preserves-is-iso-functor-Precategory f is-iso-f =
    ( inv
      ( preserves-comp-functor-Precategory C D F
        ( hom-inv-is-iso-Precategory C is-iso-f)
        ( f))) 
    ( ap
      ( hom-functor-Precategory C D F)
      ( is-retraction-hom-inv-is-iso-Precategory C is-iso-f)) 
    ( preserves-id-functor-Precategory C D F x)

  preserves-is-iso-functor-Precategory :
    (f : hom-Precategory C x y) 
    is-iso-Precategory C f 
    is-iso-Precategory D (hom-functor-Precategory C D F f)
  pr1 (preserves-is-iso-functor-Precategory f is-iso-f) =
    hom-inv-preserves-is-iso-functor-Precategory f is-iso-f
  pr1 (pr2 (preserves-is-iso-functor-Precategory f is-iso-f)) =
    is-right-inv-preserves-is-iso-functor-Precategory f is-iso-f
  pr2 (pr2 (preserves-is-iso-functor-Precategory f is-iso-f)) =
    is-left-inv-preserves-is-iso-functor-Precategory f is-iso-f

  preserves-iso-functor-Precategory :
    iso-Precategory C x y 
    iso-Precategory D
      ( obj-functor-Precategory C D F x)
      ( obj-functor-Precategory C D F y)
  pr1 (preserves-iso-functor-Precategory f) =
    hom-functor-Precategory C D F (hom-iso-Precategory C f)
  pr2 (preserves-iso-functor-Precategory f) =
    preserves-is-iso-functor-Precategory
      ( hom-iso-Precategory C f)
      ( is-iso-iso-Precategory C f)

Functors induce functors on the opposite precategories

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : functor-Precategory C D)
  where

  opposite-functor-Precategory :
    functor-Precategory (opposite-Precategory C) (opposite-Precategory D)
  pr1 opposite-functor-Precategory = obj-functor-Precategory C D F
  pr1 (pr2 opposite-functor-Precategory) = hom-functor-Precategory C D F
  pr1 (pr2 (pr2 opposite-functor-Precategory)) g f =
    preserves-comp-functor-Precategory C D F f g
  pr2 (pr2 (pr2 opposite-functor-Precategory)) =
    preserves-id-functor-Precategory C D F

Categorical laws for functor composition

Unit laws for functor composition

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2) (D : Precategory l3 l4)
  (F : functor-Precategory C D)
  where

  left-unit-law-comp-functor-Precategory :
    comp-functor-Precategory C D D (id-functor-Precategory D) F  F
  left-unit-law-comp-functor-Precategory =
    eq-eq-map-functor-Precategory C D _ _ refl

  right-unit-law-comp-functor-Precategory :
    comp-functor-Precategory C C D F (id-functor-Precategory C)  F
  right-unit-law-comp-functor-Precategory = refl

Associativity of functor composition

module _
  {l1 l1' l2 l2' l3 l3' l4 l4' : Level}
  (A : Precategory l1 l1')
  (B : Precategory l2 l2')
  (C : Precategory l3 l3')
  (D : Precategory l4 l4')
  (F : functor-Precategory A B)
  (G : functor-Precategory B C)
  (H : functor-Precategory C D)
  where

  associative-comp-functor-Precategory :
    comp-functor-Precategory A B D (comp-functor-Precategory B C D H G) F 
    comp-functor-Precategory A C D H (comp-functor-Precategory A B C G F)
  associative-comp-functor-Precategory =
    eq-eq-map-functor-Precategory A D _ _ refl

Mac Lane pentagon for functor composition

    (I(GH))F ---- I((GH)F)
          /        \
         /          \
  ((IH)G)F          I(H(GF))
          \        /
            \    /
           (IH)(GF)

The proof remains to be formalized.

module _
  {l1 l1' l2 l2' l3 l3' l4 l4' : Level}
  (A : Precategory l1 l1')
  (B : Precategory l2 l2')
  (C : Precategory l3 l3')
  (D : Precategory l4 l4')
  (E : Precategory l4 l4')
  (F : functor-Precategory A B)
  (G : functor-Precategory B C)
  (H : functor-Precategory C D)
  (I : functor-Precategory D E)
  where

  mac-lane-pentagon-comp-functor-Precategory :
    coherence-pentagon-identifications
      { x =
        comp-functor-Precategory A B E
        ( comp-functor-Precategory B D E I
          ( comp-functor-Precategory B C D H G))
        ( F)}
      { comp-functor-Precategory A D E I
        ( comp-functor-Precategory A B D
          ( comp-functor-Precategory B C D H G)
          ( F))}
      { comp-functor-Precategory A B E
        ( comp-functor-Precategory B C E
          ( comp-functor-Precategory C D E I H)
          ( G))
        ( F)}
      { comp-functor-Precategory A D E
        ( I)
        ( comp-functor-Precategory A C D
          ( H)
          ( comp-functor-Precategory A B C G F))}
      { comp-functor-Precategory A C E
        ( comp-functor-Precategory C D E I H)
        ( comp-functor-Precategory A B C G F)}
      ( associative-comp-functor-Precategory A B D E
        ( F) (comp-functor-Precategory B C D H G) (I))
      ( ap
        ( λ p → comp-functor-Precategory A B E p F)
        ( inv (associative-comp-functor-Precategory B C D E G H I)))
      ( ap
        ( λ p → comp-functor-Precategory A D E I p)
        ( associative-comp-functor-Precategory A B C D F G H))
      ( associative-comp-functor-Precategory A B C E
        ( F) (G) (comp-functor-Precategory C D E I H))
      ( inv
        ( associative-comp-functor-Precategory A C D E
          (comp-functor-Precategory A B C G F) H I))
  mac-lane-pentagon-comp-functor-Precategory = {!!}

See also

References

[AKS15]
Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.
[UF13]
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.

Recent changes