Functors between precategories
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Fernando Chu and Elisabeth Stenholm.
Created on 2022-03-11.
Last modified on 2024-09-01.
module category-theory.functors-precategories where
Imports
open import category-theory.functors-set-magmoids open import category-theory.isomorphisms-in-precategories open import category-theory.maps-precategories open import category-theory.opposite-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels
Idea
A functor from a precategory C
to a
precategory D
consists of:
- a map
F₀ : C → D
on objects, - a map
F₁ : hom x y → hom (F₀ x) (F₀ y)
on morphisms, such that the following identities hold: F₁ id_x = id_(F₀ x)
,F₁ (g ∘ f) = F₁ g ∘ F₁ f
.
Definition
The predicate on maps between precategories of being a functor
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : map-Precategory C D) where preserves-comp-hom-prop-map-Precategory : Prop (l1 ⊔ l2 ⊔ l4) preserves-comp-hom-prop-map-Precategory = preserves-comp-hom-prop-map-Set-Magmoid ( set-magmoid-Precategory C) ( set-magmoid-Precategory D) (F) preserves-comp-hom-map-Precategory : UU (l1 ⊔ l2 ⊔ l4) preserves-comp-hom-map-Precategory = type-Prop preserves-comp-hom-prop-map-Precategory is-prop-preserves-comp-hom-map-Precategory : is-prop preserves-comp-hom-map-Precategory is-prop-preserves-comp-hom-map-Precategory = is-prop-type-Prop preserves-comp-hom-prop-map-Precategory preserves-id-hom-map-Precategory : UU (l1 ⊔ l4) preserves-id-hom-map-Precategory = (x : obj-Precategory C) → ( hom-map-Precategory C D F (id-hom-Precategory C {x})) = ( id-hom-Precategory D {obj-map-Precategory C D F x}) is-prop-preserves-id-hom-map-Precategory : is-prop preserves-id-hom-map-Precategory is-prop-preserves-id-hom-map-Precategory = is-prop-Π ( λ x → is-set-hom-Precategory D ( obj-map-Precategory C D F x) ( obj-map-Precategory C D F x) ( hom-map-Precategory C D F (id-hom-Precategory C {x})) ( id-hom-Precategory D {obj-map-Precategory C D F x})) preserves-id-hom-prop-map-Precategory : Prop (l1 ⊔ l4) pr1 preserves-id-hom-prop-map-Precategory = preserves-id-hom-map-Precategory pr2 preserves-id-hom-prop-map-Precategory = is-prop-preserves-id-hom-map-Precategory is-functor-prop-map-Precategory : Prop (l1 ⊔ l2 ⊔ l4) is-functor-prop-map-Precategory = product-Prop preserves-comp-hom-prop-map-Precategory preserves-id-hom-prop-map-Precategory is-functor-map-Precategory : UU (l1 ⊔ l2 ⊔ l4) is-functor-map-Precategory = type-Prop is-functor-prop-map-Precategory is-prop-is-functor-map-Precategory : is-prop is-functor-map-Precategory is-prop-is-functor-map-Precategory = is-prop-type-Prop is-functor-prop-map-Precategory preserves-comp-is-functor-map-Precategory : is-functor-map-Precategory → preserves-comp-hom-map-Precategory preserves-comp-is-functor-map-Precategory = pr1 preserves-id-is-functor-map-Precategory : is-functor-map-Precategory → preserves-id-hom-map-Precategory preserves-id-is-functor-map-Precategory = pr2
Functors between precategories
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where functor-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) functor-Precategory = Σ ( obj-Precategory C → obj-Precategory D) ( λ F₀ → Σ ( {x y : obj-Precategory C} (f : hom-Precategory C x y) → hom-Precategory D (F₀ x) (F₀ y)) ( λ F₁ → is-functor-map-Precategory C D (F₀ , F₁))) obj-functor-Precategory : functor-Precategory → obj-Precategory C → obj-Precategory D obj-functor-Precategory = pr1 hom-functor-Precategory : (F : functor-Precategory) → {x y : obj-Precategory C} → (f : hom-Precategory C x y) → hom-Precategory D ( obj-functor-Precategory F x) ( obj-functor-Precategory F y) hom-functor-Precategory F = pr1 (pr2 F) map-functor-Precategory : functor-Precategory → map-Precategory C D pr1 (map-functor-Precategory F) = obj-functor-Precategory F pr2 (map-functor-Precategory F) = hom-functor-Precategory F is-functor-functor-Precategory : (F : functor-Precategory) → is-functor-map-Precategory C D (map-functor-Precategory F) is-functor-functor-Precategory = pr2 ∘ pr2 preserves-comp-functor-Precategory : (F : functor-Precategory) {x y z : obj-Precategory C} (g : hom-Precategory C y z) (f : hom-Precategory C x y) → ( hom-functor-Precategory F (comp-hom-Precategory C g f)) = ( comp-hom-Precategory D ( hom-functor-Precategory F g) ( hom-functor-Precategory F f)) preserves-comp-functor-Precategory F = preserves-comp-is-functor-map-Precategory C D ( map-functor-Precategory F) ( is-functor-functor-Precategory F) preserves-id-functor-Precategory : (F : functor-Precategory) (x : obj-Precategory C) → ( hom-functor-Precategory F (id-hom-Precategory C {x})) = ( id-hom-Precategory D {obj-functor-Precategory F x}) preserves-id-functor-Precategory F = preserves-id-is-functor-map-Precategory C D ( map-functor-Precategory F) ( is-functor-functor-Precategory F) functor-map-Precategory : (F : map-Precategory C D) → is-functor-map-Precategory C D F → functor-Precategory pr1 (functor-map-Precategory F is-functor-F) = obj-map-Precategory C D F pr1 (pr2 (functor-map-Precategory F is-functor-F)) = hom-map-Precategory C D F pr2 (pr2 (functor-map-Precategory F is-functor-F)) = is-functor-F
Examples
The identity functor
There is an identity functor on any precategory.
id-functor-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → functor-Precategory C C pr1 (id-functor-Precategory C) = id pr1 (pr2 (id-functor-Precategory C)) = id pr1 (pr2 (pr2 (id-functor-Precategory C))) g f = refl pr2 (pr2 (pr2 (id-functor-Precategory C))) x = refl
Composition of functors
Any two compatible functors can be composed to a new functor.
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Precategory l1 l2) (B : Precategory l3 l4) (C : Precategory l5 l6) (G : functor-Precategory B C) (F : functor-Precategory A B) where obj-comp-functor-Precategory : obj-Precategory A → obj-Precategory C obj-comp-functor-Precategory = obj-functor-Precategory B C G ∘ obj-functor-Precategory A B F hom-comp-functor-Precategory : {x y : obj-Precategory A} → hom-Precategory A x y → hom-Precategory C ( obj-comp-functor-Precategory x) ( obj-comp-functor-Precategory y) hom-comp-functor-Precategory = hom-functor-Precategory B C G ∘ hom-functor-Precategory A B F map-comp-functor-Precategory : map-Precategory A C pr1 map-comp-functor-Precategory = obj-comp-functor-Precategory pr2 map-comp-functor-Precategory = hom-comp-functor-Precategory preserves-comp-comp-functor-Precategory : preserves-comp-hom-map-Precategory A C map-comp-functor-Precategory preserves-comp-comp-functor-Precategory g f = ( ap ( hom-functor-Precategory B C G) ( preserves-comp-functor-Precategory A B F g f)) ∙ ( preserves-comp-functor-Precategory B C G ( hom-functor-Precategory A B F g) ( hom-functor-Precategory A B F f)) preserves-id-comp-functor-Precategory : preserves-id-hom-map-Precategory A C map-comp-functor-Precategory preserves-id-comp-functor-Precategory x = ( ap ( hom-functor-Precategory B C G) ( preserves-id-functor-Precategory A B F x)) ∙ ( preserves-id-functor-Precategory B C G ( obj-functor-Precategory A B F x)) comp-functor-Precategory : functor-Precategory A C pr1 comp-functor-Precategory = obj-comp-functor-Precategory pr1 (pr2 comp-functor-Precategory) = hom-functor-Precategory B C G ∘ hom-functor-Precategory A B F pr1 (pr2 (pr2 comp-functor-Precategory)) = preserves-comp-comp-functor-Precategory pr2 (pr2 (pr2 comp-functor-Precategory)) = preserves-id-comp-functor-Precategory
Properties
Extensionality of functors between precategories
Equality of functors is equality of underlying maps
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F G : functor-Precategory C D) where equiv-eq-map-eq-functor-Precategory : (F = G) ≃ (map-functor-Precategory C D F = map-functor-Precategory C D G) equiv-eq-map-eq-functor-Precategory = equiv-ap-emb ( comp-emb ( emb-subtype (is-functor-prop-map-Precategory C D)) ( emb-equiv ( inv-associative-Σ ( obj-Precategory C → obj-Precategory D) ( λ F₀ → { x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D (F₀ x) (F₀ y)) ( pr1 ∘ is-functor-prop-map-Precategory C D)))) eq-map-eq-functor-Precategory : (F = G) → (map-functor-Precategory C D F = map-functor-Precategory C D G) eq-map-eq-functor-Precategory = map-equiv equiv-eq-map-eq-functor-Precategory eq-eq-map-functor-Precategory : (map-functor-Precategory C D F = map-functor-Precategory C D G) → (F = G) eq-eq-map-functor-Precategory = map-inv-equiv equiv-eq-map-eq-functor-Precategory is-section-eq-eq-map-functor-Precategory : eq-map-eq-functor-Precategory ∘ eq-eq-map-functor-Precategory ~ id is-section-eq-eq-map-functor-Precategory = is-section-map-inv-equiv equiv-eq-map-eq-functor-Precategory is-retraction-eq-eq-map-functor-Precategory : eq-eq-map-functor-Precategory ∘ eq-map-eq-functor-Precategory ~ id is-retraction-eq-eq-map-functor-Precategory = is-retraction-map-inv-equiv equiv-eq-map-eq-functor-Precategory
Equality of functors is homotopy of underlying maps
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F G : functor-Precategory C D) where htpy-functor-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-functor-Precategory = htpy-map-Precategory C D ( map-functor-Precategory C D F) ( map-functor-Precategory C D G) equiv-htpy-eq-functor-Precategory : (F = G) ≃ htpy-functor-Precategory equiv-htpy-eq-functor-Precategory = ( equiv-htpy-eq-map-Precategory C D ( map-functor-Precategory C D F) ( map-functor-Precategory C D G)) ∘e ( equiv-eq-map-eq-functor-Precategory C D F G) htpy-eq-functor-Precategory : F = G → htpy-functor-Precategory htpy-eq-functor-Precategory = map-equiv equiv-htpy-eq-functor-Precategory eq-htpy-functor-Precategory : htpy-functor-Precategory → F = G eq-htpy-functor-Precategory = map-inv-equiv equiv-htpy-eq-functor-Precategory is-section-eq-htpy-functor-Precategory : htpy-eq-functor-Precategory ∘ eq-htpy-functor-Precategory ~ id is-section-eq-htpy-functor-Precategory = is-section-map-inv-equiv equiv-htpy-eq-functor-Precategory is-retraction-eq-htpy-functor-Precategory : eq-htpy-functor-Precategory ∘ htpy-eq-functor-Precategory ~ id is-retraction-eq-htpy-functor-Precategory = is-retraction-map-inv-equiv equiv-htpy-eq-functor-Precategory
Functors preserve isomorphisms
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) {x y : obj-Precategory C} where hom-inv-preserves-is-iso-functor-Precategory : (f : hom-Precategory C x y) → is-iso-Precategory C f → hom-Precategory D ( obj-functor-Precategory C D F y) ( obj-functor-Precategory C D F x) hom-inv-preserves-is-iso-functor-Precategory f is-iso-f = hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f) is-right-inv-preserves-is-iso-functor-Precategory : (f : hom-Precategory C x y) → (is-iso-f : is-iso-Precategory C f) → comp-hom-Precategory D ( hom-functor-Precategory C D F f) ( hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f)) = id-hom-Precategory D is-right-inv-preserves-is-iso-functor-Precategory f is-iso-f = ( inv ( preserves-comp-functor-Precategory C D F ( f) ( hom-inv-is-iso-Precategory C is-iso-f))) ∙ ( ap ( hom-functor-Precategory C D F) ( is-section-hom-inv-is-iso-Precategory C is-iso-f)) ∙ ( preserves-id-functor-Precategory C D F y) is-left-inv-preserves-is-iso-functor-Precategory : (f : hom-Precategory C x y) → (is-iso-f : is-iso-Precategory C f) → comp-hom-Precategory D ( hom-functor-Precategory C D F (hom-inv-is-iso-Precategory C is-iso-f)) ( hom-functor-Precategory C D F f) = id-hom-Precategory D is-left-inv-preserves-is-iso-functor-Precategory f is-iso-f = ( inv ( preserves-comp-functor-Precategory C D F ( hom-inv-is-iso-Precategory C is-iso-f) ( f))) ∙ ( ap ( hom-functor-Precategory C D F) ( is-retraction-hom-inv-is-iso-Precategory C is-iso-f)) ∙ ( preserves-id-functor-Precategory C D F x) preserves-is-iso-functor-Precategory : (f : hom-Precategory C x y) → is-iso-Precategory C f → is-iso-Precategory D (hom-functor-Precategory C D F f) pr1 (preserves-is-iso-functor-Precategory f is-iso-f) = hom-inv-preserves-is-iso-functor-Precategory f is-iso-f pr1 (pr2 (preserves-is-iso-functor-Precategory f is-iso-f)) = is-right-inv-preserves-is-iso-functor-Precategory f is-iso-f pr2 (pr2 (preserves-is-iso-functor-Precategory f is-iso-f)) = is-left-inv-preserves-is-iso-functor-Precategory f is-iso-f preserves-iso-functor-Precategory : iso-Precategory C x y → iso-Precategory D ( obj-functor-Precategory C D F x) ( obj-functor-Precategory C D F y) pr1 (preserves-iso-functor-Precategory f) = hom-functor-Precategory C D F (hom-iso-Precategory C f) pr2 (preserves-iso-functor-Precategory f) = preserves-is-iso-functor-Precategory ( hom-iso-Precategory C f) ( is-iso-iso-Precategory C f)
Functors induce functors on the opposite precategories
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where opposite-functor-Precategory : functor-Precategory (opposite-Precategory C) (opposite-Precategory D) pr1 opposite-functor-Precategory = obj-functor-Precategory C D F pr1 (pr2 opposite-functor-Precategory) = hom-functor-Precategory C D F pr1 (pr2 (pr2 opposite-functor-Precategory)) g f = preserves-comp-functor-Precategory C D F f g pr2 (pr2 (pr2 opposite-functor-Precategory)) = preserves-id-functor-Precategory C D F
Categorical laws for functor composition
Unit laws for functor composition
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where left-unit-law-comp-functor-Precategory : comp-functor-Precategory C D D (id-functor-Precategory D) F = F left-unit-law-comp-functor-Precategory = eq-eq-map-functor-Precategory C D _ _ refl right-unit-law-comp-functor-Precategory : comp-functor-Precategory C C D F (id-functor-Precategory C) = F right-unit-law-comp-functor-Precategory = refl
Associativity of functor composition
module _ {l1 l1' l2 l2' l3 l3' l4 l4' : Level} (A : Precategory l1 l1') (B : Precategory l2 l2') (C : Precategory l3 l3') (D : Precategory l4 l4') (F : functor-Precategory A B) (G : functor-Precategory B C) (H : functor-Precategory C D) where associative-comp-functor-Precategory : comp-functor-Precategory A B D (comp-functor-Precategory B C D H G) F = comp-functor-Precategory A C D H (comp-functor-Precategory A B C G F) associative-comp-functor-Precategory = eq-eq-map-functor-Precategory A D _ _ refl
Mac Lane pentagon for functor composition
(I(GH))F ---- I((GH)F)
/ \
/ \
((IH)G)F I(H(GF))
\ /
\ /
(IH)(GF)
The proof remains to be formalized.
module _
{l1 l1' l2 l2' l3 l3' l4 l4' : Level}
(A : Precategory l1 l1')
(B : Precategory l2 l2')
(C : Precategory l3 l3')
(D : Precategory l4 l4')
(E : Precategory l4 l4')
(F : functor-Precategory A B)
(G : functor-Precategory B C)
(H : functor-Precategory C D)
(I : functor-Precategory D E)
where
mac-lane-pentagon-comp-functor-Precategory :
coherence-pentagon-identifications
{ x =
comp-functor-Precategory A B E
( comp-functor-Precategory B D E I
( comp-functor-Precategory B C D H G))
( F)}
{ comp-functor-Precategory A D E I
( comp-functor-Precategory A B D
( comp-functor-Precategory B C D H G)
( F))}
{ comp-functor-Precategory A B E
( comp-functor-Precategory B C E
( comp-functor-Precategory C D E I H)
( G))
( F)}
{ comp-functor-Precategory A D E
( I)
( comp-functor-Precategory A C D
( H)
( comp-functor-Precategory A B C G F))}
{ comp-functor-Precategory A C E
( comp-functor-Precategory C D E I H)
( comp-functor-Precategory A B C G F)}
( associative-comp-functor-Precategory A B D E
( F) (comp-functor-Precategory B C D H G) (I))
( ap
( λ p → comp-functor-Precategory A B E p F)
( inv (associative-comp-functor-Precategory B C D E G H I)))
( ap
( λ p → comp-functor-Precategory A D E I p)
( associative-comp-functor-Precategory A B C D F G H))
( associative-comp-functor-Precategory A B C E
( F) (G) (comp-functor-Precategory C D E I H))
( inv
( associative-comp-functor-Precategory A C D E
(comp-functor-Precategory A B C G F) H I))
mac-lane-pentagon-comp-functor-Precategory = {!!}
See also
References
- [AKS15]
- Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk completion. Mathematical Structures in Computer Science, 25(5):1010–1039, 06 2015. arXiv:1303.0584, doi:10.1017/S0960129514000486.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
External links
- Functors at 1lab
Recent changes
- 2024-09-01. Fernando Chu. Some definitions about precategories (#1172).
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-27. Egbert Rijke. Fix "The predicate of" section headers (#1010).