Center of a semigroup
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-03-18.
Last modified on 2023-11-24.
module group-theory.centers-semigroups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.central-elements-semigroups open import group-theory.homomorphisms-semigroups open import group-theory.semigroups open import group-theory.subsemigroups
Idea
The center of a semigroup consists of those elements that are central.
Definition
module _ {l : Level} (G : Semigroup l) where subtype-center-Semigroup : type-Semigroup G → Prop l subtype-center-Semigroup = is-central-element-prop-Semigroup G center-Semigroup : Subsemigroup l G pr1 center-Semigroup = subtype-center-Semigroup pr2 center-Semigroup {x} {y} = is-central-element-mul-Semigroup G x y semigroup-center-Semigroup : Semigroup l semigroup-center-Semigroup = semigroup-Subsemigroup G center-Semigroup type-center-Semigroup : UU l type-center-Semigroup = type-Subsemigroup G center-Semigroup mul-center-Semigroup : (x y : type-center-Semigroup) → type-center-Semigroup mul-center-Semigroup = mul-Subsemigroup G center-Semigroup associative-mul-center-Semigroup : (x y z : type-center-Semigroup) → mul-center-Semigroup (mul-center-Semigroup x y) z = mul-center-Semigroup x (mul-center-Semigroup y z) associative-mul-center-Semigroup = associative-mul-Subsemigroup G center-Semigroup inclusion-center-Semigroup : type-center-Semigroup → type-Semigroup G inclusion-center-Semigroup = inclusion-Subsemigroup G center-Semigroup preserves-mul-inclusion-center-Semigroup : {x y : type-center-Semigroup} → inclusion-center-Semigroup (mul-center-Semigroup x y) = mul-Semigroup G ( inclusion-center-Semigroup x) ( inclusion-center-Semigroup y) preserves-mul-inclusion-center-Semigroup {x} {y} = preserves-mul-inclusion-Subsemigroup G center-Semigroup {x} {y} hom-inclusion-center-Semigroup : hom-Semigroup semigroup-center-Semigroup G hom-inclusion-center-Semigroup = hom-inclusion-Subsemigroup G center-Semigroup
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).