The binomial theorem for rings

Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.

Created on 2023-02-20.
Last modified on 2024-10-29.

module ring-theory.binomial-theorem-rings where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.binomial-coefficients
open import elementary-number-theory.distance-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import linear-algebra.vectors-on-rings

open import ring-theory.binomial-theorem-semirings
open import ring-theory.powers-of-elements-rings
open import ring-theory.rings
open import ring-theory.sums-rings

open import univalent-combinatorics.standard-finite-types

Idea

The binomial theorem for rings asserts that for any two elements x and y of a commutative ring R and any natural number n, if xy = yx holds then we have

  (x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ.

The binomial theorem is the 44th theorem on Freek Wiedijk’s list of 100 theorems [Wie].

Definitions

Binomial sums

binomial-sum-Ring :
  {l : Level} (R : Ring l)
  (n : ) (f : functional-vec-Ring R (succ-ℕ n))  type-Ring R
binomial-sum-Ring R = binomial-sum-Semiring (semiring-Ring R)

Properties

Binomial sums of one and two elements

module _
  {l : Level} (R : Ring l)
  where

  binomial-sum-one-element-Ring :
    (f : functional-vec-Ring R 1) 
    binomial-sum-Ring R 0 f  head-functional-vec-Ring R 0 f
  binomial-sum-one-element-Ring =
    binomial-sum-one-element-Semiring (semiring-Ring R)

  binomial-sum-two-elements-Ring :
    (f : functional-vec-Ring R 2) 
    binomial-sum-Ring R 1 f  add-Ring R (f (zero-Fin 1)) (f (one-Fin 1))
  binomial-sum-two-elements-Ring =
    binomial-sum-two-elements-Semiring (semiring-Ring R)

Binomial sums are homotopy invariant

module _
  {l : Level} (R : Ring l)
  where

  htpy-binomial-sum-Ring :
    (n : ) {f g : functional-vec-Ring R (succ-ℕ n)} 
    (f ~ g)  binomial-sum-Ring R n f  binomial-sum-Ring R n g
  htpy-binomial-sum-Ring = htpy-binomial-sum-Semiring (semiring-Ring R)

Multiplication distributes over sums

module _
  {l : Level} (R : Ring l)
  where

  left-distributive-mul-binomial-sum-Ring :
    (n : ) (x : type-Ring R) (f : functional-vec-Ring R (succ-ℕ n)) 
    mul-Ring R x (binomial-sum-Ring R n f) 
    binomial-sum-Ring R n  i  mul-Ring R x (f i))
  left-distributive-mul-binomial-sum-Ring =
    left-distributive-mul-binomial-sum-Semiring (semiring-Ring R)

  right-distributive-mul-binomial-sum-Ring :
    (n : ) (f : functional-vec-Ring R (succ-ℕ n)) (x : type-Ring R) 
    mul-Ring R (binomial-sum-Ring R n f) x 
    binomial-sum-Ring R n  i  mul-Ring R (f i) x)
  right-distributive-mul-binomial-sum-Ring =
    right-distributive-mul-binomial-sum-Semiring (semiring-Ring R)

Theorem

Binomial theorem for rings

binomial-theorem-Ring :
  {l : Level} (R : Ring l) (n : ) (x y : type-Ring R) 
  mul-Ring R x y  mul-Ring R y x 
  power-Ring R n (add-Ring R x y) 
  binomial-sum-Ring R n
    ( λ i 
      mul-Ring R
      ( power-Ring R (nat-Fin (succ-ℕ n) i) x)
      ( power-Ring R (dist-ℕ (nat-Fin (succ-ℕ n) i) n) y))
binomial-theorem-Ring R = binomial-theorem-Semiring (semiring-Ring R)

Corollaries

If x commutes with y, then we can compute (x+y)ⁿ⁺ᵐ as a linear combination of xⁿ and yᵐ

is-linear-combination-power-add-Ring :
  {l : Level} (R : Ring l) (n m : ) (x y : type-Ring R) 
  mul-Ring R x y  mul-Ring R y x 
  power-Ring R (n +ℕ m) (add-Ring R x y) 
  add-Ring R
    ( mul-Ring R
      ( power-Ring R m y)
      ( sum-Ring R n
        ( λ i 
          mul-nat-scalar-Ring R
            ( binomial-coefficient-ℕ (n +ℕ m) (nat-Fin n i))
            ( mul-Ring R
              ( power-Ring R (nat-Fin n i) x)
              ( power-Ring R (dist-ℕ (nat-Fin n i) n) y)))))
    ( mul-Ring R
      ( power-Ring R n x)
      ( sum-Ring R
        ( succ-ℕ m)
        ( λ i 
          mul-nat-scalar-Ring R
            ( binomial-coefficient-ℕ
              ( n +ℕ m)
              ( n +ℕ (nat-Fin (succ-ℕ m) i)))
            ( mul-Ring R
              ( power-Ring R (nat-Fin (succ-ℕ m) i) x)
              ( power-Ring R (dist-ℕ (nat-Fin (succ-ℕ m) i) m) y)))))
is-linear-combination-power-add-Ring R =
  is-linear-combination-power-add-Semiring (semiring-Ring R)

References

[Wie]
Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.

Recent changes