Monomorphisms in the category of groups
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Eléonore Mangel.
Created on 2022-04-25.
Last modified on 2023-11-24.
module group-theory.monomorphisms-groups where
Imports
open import category-theory.monomorphisms-in-large-precategories open import foundation.propositions open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.isomorphisms-groups open import group-theory.precategory-of-groups
Idea
A group homomorphism f : x → y
is a
monomorphism if whenever we have two group homomorphisms g h : w → x
such
that f ∘ g = f ∘ h
, then in fact g = h
. The way to state this in Homotopy
Type Theory is to say that postcomposition by f
is an
embedding.
Definition
module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) (H : Group l2) (f : hom-Group G H) where is-mono-prop-hom-Group : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-prop-hom-Group = is-mono-prop-Large-Precategory Group-Large-Precategory l3 G H f is-mono-hom-Group : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono-hom-Group = type-Prop is-mono-prop-hom-Group is-prop-is-mono-hom-Group : is-prop is-mono-hom-Group is-prop-is-mono-hom-Group = is-prop-type-Prop is-mono-prop-hom-Group
Properties
Isomorphisms are monomorphisms
module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) (H : Group l2) (f : iso-Group G H) where is-mono-iso-Group : is-mono-hom-Group l3 G H (hom-iso-Group G H f) is-mono-iso-Group = is-mono-iso-Large-Precategory Group-Large-Precategory l3 G H f
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-11. Fredrik Bakke. Isomorphisms induce equivalences by pre- and postcomposition (#912).
- 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).