Iterating functions
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-05-06.
Last modified on 2025-10-29.
module foundation.iterating-functions where open import foundation-core.iterating-functions public
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplicative-monoid-of-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.function-extensionality open import foundation.function-types open import foundation.propositional-maps open import foundation.subtypes open import foundation.truncated-maps open import foundation.truncation-levels open import foundation.universe-levels open import foundation-core.endomorphisms open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.sets open import group-theory.monoid-actions
Idea
Any map f : X → X can be
iterated¶ by repeatedly
applying f.
Properties
For any map f : X → X, iterating f defines a monoid action of ℕ on X
module _ {l : Level} {X : UU l} where iterate-add-ℕ : (k l : ℕ) (f : X → X) (x : X) → iterate (k +ℕ l) f x = iterate k f (iterate l f x) iterate-add-ℕ k zero-ℕ f x = refl iterate-add-ℕ k (succ-ℕ l) f x = ap f (iterate-add-ℕ k l f x) ∙ reassociate-iterate-succ-ℕ k f (iterate l f x) left-unit-law-iterate-add-ℕ : (l : ℕ) (f : X → X) (x : X) → iterate-add-ℕ 0 l f x = ap (λ t → iterate t f x) (left-unit-law-add-ℕ l) left-unit-law-iterate-add-ℕ zero-ℕ f x = refl left-unit-law-iterate-add-ℕ (succ-ℕ l) f x = ( right-unit) ∙ ( ( ap² f (left-unit-law-iterate-add-ℕ l f x)) ∙ ( ( inv (ap-comp f (λ t → iterate t f x) (left-unit-law-add-ℕ l))) ∙ ( ap-comp (λ t → iterate t f x) succ-ℕ (left-unit-law-add-ℕ l)))) right-unit-law-iterate-add-ℕ : (k : ℕ) (f : X → X) (x : X) → iterate-add-ℕ k 0 f x = ap (λ t → iterate t f x) (right-unit-law-add-ℕ k) right-unit-law-iterate-add-ℕ k f x = refl iterate-iterate : (k l : ℕ) (f : X → X) (x : X) → iterate k f (iterate l f x) = iterate l f (iterate k f x) iterate-iterate k l f x = ( inv (iterate-add-ℕ k l f x)) ∙ ( ( ap (λ t → iterate t f x) (commutative-add-ℕ k l)) ∙ ( iterate-add-ℕ l k f x)) iterate-mul-ℕ : (k l : ℕ) (f : X → X) (x : X) → iterate (k *ℕ l) f x = iterate k (iterate l f) x iterate-mul-ℕ zero-ℕ l f x = refl iterate-mul-ℕ (succ-ℕ k) l f x = ( iterate-add-ℕ (k *ℕ l) l f x) ∙ ( ( iterate-mul-ℕ k l f (iterate l f x)) ∙ ( inv (reassociate-iterate-succ-ℕ k (iterate l f) x))) iterate-exp-ℕ : (k l : ℕ) (f : X → X) (x : X) → iterate (exp-ℕ l k) f x = iterate k (iterate l) f x iterate-exp-ℕ zero-ℕ l f x = refl iterate-exp-ℕ (succ-ℕ k) l f x = ( iterate-mul-ℕ (exp-ℕ l k) l f x) ∙ ( ( iterate-exp-ℕ k l (iterate l f) x) ∙ ( inv (htpy-eq (reassociate-iterate-succ-ℕ k (iterate l) f) x))) module _ {l : Level} (X : Set l) where iterative-action-Monoid : action-Monoid l ℕ*-Monoid pr1 iterative-action-Monoid = endo-Set X pr1 (pr1 (pr2 iterative-action-Monoid)) k f = iterate k f pr2 (pr1 (pr2 iterative-action-Monoid)) {k} {l} = eq-htpy (λ f → eq-htpy (λ x → iterate-mul-ℕ k l f x)) pr2 (pr2 iterative-action-Monoid) = refl
If f : X → X satisfies a property of endofunctions on X, and the property is closed under composition then iterates of f satisfy the property
module _ {l1 l2 : Level} {X : UU l1} {f : X → X} {P : (X → X) → UU l2} where is-in-function-class-iterate-succ-ℕ : ( (h g : X → X) → P h → P g → P (h ∘ g)) → (n : ℕ) → (F : P f) → P (iterate (succ-ℕ n) f) is-in-function-class-iterate-succ-ℕ H zero-ℕ F = F is-in-function-class-iterate-succ-ℕ H (succ-ℕ n) F = H f (iterate (succ-ℕ n) f) F (is-in-function-class-iterate-succ-ℕ H n F) is-in-function-class-iterate : (I : P (id {A = X})) → ((h g : X → X) → P h → P g → P (h ∘ g)) → (n : ℕ) → (F : P f) → P (iterate n f) is-in-function-class-iterate I H zero-ℕ F = I is-in-function-class-iterate I H (succ-ℕ n) F = H f (iterate n f) F (is-in-function-class-iterate I H n F)
Iterates of equivalences are equivalences
module _ {l : Level} {X : UU l} {f : X → X} where abstract is-equiv-iterate : (n : ℕ) → is-equiv f → is-equiv (iterate n f) is-equiv-iterate = is-in-function-class-iterate is-equiv-id (λ h g H G → is-equiv-comp h g G H)
Iterates of embeddings are embeddings
module _ {l : Level} {X : UU l} {f : X → X} where abstract is-emb-iterate : (n : ℕ) → is-emb f → is-emb (iterate n f) is-emb-iterate = is-in-function-class-iterate is-emb-id is-emb-comp
Iterates of truncated maps are truncated
module _ {l : Level} (k : 𝕋) {X : UU l} {f : X → X} where abstract is-trunc-map-iterate : (n : ℕ) → is-trunc-map k f → is-trunc-map k (iterate n f) is-trunc-map-iterate = is-in-function-class-iterate (is-trunc-map-id k) (is-trunc-map-comp k)
Iterates of propositional maps are propositional
module _ {l : Level} (k : 𝕋) {X : UU l} {f : X → X} where abstract is-prop-map-iterate : (n : ℕ) → is-prop-map f → is-prop-map (iterate n f) is-prop-map-iterate = is-in-function-class-iterate is-prop-map-id is-prop-map-comp
External links
- Function iteration on Wikidata
Recent changes
- 2025-10-29. Fredrik Bakke. A constructive Cantor–Schröder–Bernstein theorem (#1206).
- 2025-08-30. Fredrik Bakke. Closure properties of π-finite types (#1311).
- 2025-08-14. Fredrik Bakke. More logic (#1387).
- 2025-02-27. Egbert Rijke and Fredrik Bakke. Cleaning up for homotopy groups (#836).
- 2025-01-06. Fredrik Bakke. Iterating families of maps over a map (#1195).