Convergent Cauchy approximations in metric spaces

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.convergent-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces
open import metric-spaces.metric-spaces

Idea

A Cauchy approximation in a metric space is convergent if it has a limit. Because limits of cauchy approximations in metric spaces are unique, this is a subtype of the type of Cauchy approximations.

Definitions

The property of being a convergent Cauchy approximation in a metric space

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (f : cauchy-approximation-Metric-Space A)
  where

  is-convergent-cauchy-approximation-Metric-Space : UU (l1  l2)
  is-convergent-cauchy-approximation-Metric-Space =
    Σ ( type-Metric-Space A)
      ( is-limit-cauchy-approximation-Premetric-Space
        ( premetric-Metric-Space A)
        ( f))

  abstract
    is-prop-is-convergent-cauchy-approximation-Metric-Space :
      is-prop is-convergent-cauchy-approximation-Metric-Space
    is-prop-is-convergent-cauchy-approximation-Metric-Space =
      is-prop-all-elements-equal
        ( λ x y 
          eq-type-subtype
            ( is-limit-cauchy-approximation-prop-Premetric-Space
              ( premetric-Metric-Space A)
              ( f))
            ( all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space
              ( premetric-Metric-Space A)
              ( is-symmetric-structure-Metric-Space A)
              ( is-triangular-structure-Metric-Space A)
              ( is-extensional-structure-Metric-Space A)
              ( f)
              ( pr2 x)
              ( pr2 y)))

  is-convergent-prop-cauchy-approximation-Metric-Space : Prop (l1  l2)
  is-convergent-prop-cauchy-approximation-Metric-Space =
    is-convergent-cauchy-approximation-Metric-Space ,
    is-prop-is-convergent-cauchy-approximation-Metric-Space

The type of convergent cauchy approximations in a metric space

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  convergent-cauchy-approximation-Metric-Space : UU (l1  l2)
  convergent-cauchy-approximation-Metric-Space =
    type-subtype (is-convergent-prop-cauchy-approximation-Metric-Space A)
module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (f : convergent-cauchy-approximation-Metric-Space A)
  where

  approximation-convergent-cauchy-approximation-Metric-Space :
    cauchy-approximation-Metric-Space A
  approximation-convergent-cauchy-approximation-Metric-Space = pr1 f

  map-convergent-cauchy-approximation-Metric-Space : ℚ⁺  type-Metric-Space A
  map-convergent-cauchy-approximation-Metric-Space =
    map-cauchy-approximation-Metric-Space
      A
      approximation-convergent-cauchy-approximation-Metric-Space

  is-cauchy-approximation-map-convergent-cauchy-approximation-Metric-Space :
    (ε δ : ℚ⁺) 
    neighborhood-Metric-Space
      ( A)
      ( ε +ℚ⁺ δ)
      ( map-convergent-cauchy-approximation-Metric-Space ε)
      ( map-convergent-cauchy-approximation-Metric-Space δ)
  is-cauchy-approximation-map-convergent-cauchy-approximation-Metric-Space =
    is-cauchy-approximation-map-cauchy-approximation-Metric-Space
      A
      approximation-convergent-cauchy-approximation-Metric-Space

  limit-convergent-cauchy-approximation-Metric-Space : type-Metric-Space A
  limit-convergent-cauchy-approximation-Metric-Space = pr1 (pr2 f)

  is-limit-limit-convergent-cauchy-approximation-Metric-Space :
    (ε δ : ℚ⁺) 
    neighborhood-Metric-Space
      ( A)
      ( ε +ℚ⁺ δ)
      ( map-convergent-cauchy-approximation-Metric-Space ε)
      ( limit-convergent-cauchy-approximation-Metric-Space)
  is-limit-limit-convergent-cauchy-approximation-Metric-Space = pr2 (pr2 f)

Recent changes