Convergent Cauchy approximations in metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.convergent-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces open import metric-spaces.metric-spaces
Idea
A Cauchy approximation in a metric space is convergent¶ if it has a limit. Because limits of cauchy approximations in metric spaces are unique, this is a subtype of the type of Cauchy approximations.
Definitions
The property of being a convergent Cauchy approximation in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) where is-convergent-cauchy-approximation-Metric-Space : UU (l1 ⊔ l2) is-convergent-cauchy-approximation-Metric-Space = Σ ( type-Metric-Space A) ( is-limit-cauchy-approximation-Premetric-Space ( premetric-Metric-Space A) ( f)) abstract is-prop-is-convergent-cauchy-approximation-Metric-Space : is-prop is-convergent-cauchy-approximation-Metric-Space is-prop-is-convergent-cauchy-approximation-Metric-Space = is-prop-all-elements-equal ( λ x y → eq-type-subtype ( is-limit-cauchy-approximation-prop-Premetric-Space ( premetric-Metric-Space A) ( f)) ( all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space ( premetric-Metric-Space A) ( is-symmetric-structure-Metric-Space A) ( is-triangular-structure-Metric-Space A) ( is-extensional-structure-Metric-Space A) ( f) ( pr2 x) ( pr2 y))) is-convergent-prop-cauchy-approximation-Metric-Space : Prop (l1 ⊔ l2) is-convergent-prop-cauchy-approximation-Metric-Space = is-convergent-cauchy-approximation-Metric-Space , is-prop-is-convergent-cauchy-approximation-Metric-Space
The type of convergent cauchy approximations in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where convergent-cauchy-approximation-Metric-Space : UU (l1 ⊔ l2) convergent-cauchy-approximation-Metric-Space = type-subtype (is-convergent-prop-cauchy-approximation-Metric-Space A)
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : convergent-cauchy-approximation-Metric-Space A) where approximation-convergent-cauchy-approximation-Metric-Space : cauchy-approximation-Metric-Space A approximation-convergent-cauchy-approximation-Metric-Space = pr1 f map-convergent-cauchy-approximation-Metric-Space : ℚ⁺ → type-Metric-Space A map-convergent-cauchy-approximation-Metric-Space = map-cauchy-approximation-Metric-Space A approximation-convergent-cauchy-approximation-Metric-Space is-cauchy-approximation-map-convergent-cauchy-approximation-Metric-Space : (ε δ : ℚ⁺) → neighborhood-Metric-Space ( A) ( ε +ℚ⁺ δ) ( map-convergent-cauchy-approximation-Metric-Space ε) ( map-convergent-cauchy-approximation-Metric-Space δ) is-cauchy-approximation-map-convergent-cauchy-approximation-Metric-Space = is-cauchy-approximation-map-cauchy-approximation-Metric-Space A approximation-convergent-cauchy-approximation-Metric-Space limit-convergent-cauchy-approximation-Metric-Space : type-Metric-Space A limit-convergent-cauchy-approximation-Metric-Space = pr1 (pr2 f) is-limit-limit-convergent-cauchy-approximation-Metric-Space : (ε δ : ℚ⁺) → neighborhood-Metric-Space ( A) ( ε +ℚ⁺ δ) ( map-convergent-cauchy-approximation-Metric-Space ε) ( limit-convergent-cauchy-approximation-Metric-Space) is-limit-limit-convergent-cauchy-approximation-Metric-Space = pr2 (pr2 f)
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).