Addition of negative real numbers
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
{-# OPTIONS --lossy-unification #-} module real-numbers.addition-negative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.functoriality-disjunction open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The negative real numbers are closed under addition.
Definition
abstract is-negative-add-ℝ : {l1 l2 : Level} {x : ℝ l1} {y : ℝ l2} → is-negative-ℝ x → is-negative-ℝ y → is-negative-ℝ (x +ℝ y) is-negative-add-ℝ {x = x} {y = y} x<0 y<0 = transitive-le-ℝ ( x +ℝ y) ( x) ( zero-ℝ) ( x<0) ( tr ( le-ℝ (x +ℝ y)) ( right-unit-law-add-ℝ x) ( preserves-le-left-add-ℝ x y zero-ℝ y<0)) add-ℝ⁻ : {l1 l2 : Level} → ℝ⁻ l1 → ℝ⁻ l2 → ℝ⁻ (l1 ⊔ l2) add-ℝ⁻ (x , x<0) (y , y<0) = (add-ℝ x y , is-negative-add-ℝ x<0 y<0) infixl 35 _+ℝ⁻_ _+ℝ⁻_ : {l1 l2 : Level} → ℝ⁻ l1 → ℝ⁻ l2 → ℝ⁻ (l1 ⊔ l2) _+ℝ⁻_ = add-ℝ⁻
Properties
If x + y is negative, x or y is negative
abstract is-negative-either-is-negative-add-ℝ : {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) → is-negative-ℝ (x +ℝ y) → disjunction-type (is-negative-ℝ x) (is-negative-ℝ y) is-negative-either-is-negative-add-ℝ x y x+y<0 = map-disjunction ( is-negative-is-positive-neg-ℝ x) ( is-negative-is-positive-neg-ℝ y) ( is-positive-either-is-positive-add-ℝ ( neg-ℝ x) ( neg-ℝ y) ( tr ( is-positive-ℝ) ( distributive-neg-add-ℝ x y) ( neg-is-negative-ℝ (x +ℝ y) x+y<0)))
Recent changes
- 2025-11-21. Louis Wasserman. Vector spaces (#1689).