Arithmetically located Dedekind cuts
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2025-02-08.
Last modified on 2025-02-16.
{-# OPTIONS --lossy-unification #-} module real-numbers.arithmetically-located-dedekind-cuts where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.binary-transport open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.existential-quantification open import foundation.identity-types open import foundation.logical-equivalences open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups open import real-numbers.dedekind-real-numbers open import real-numbers.lower-dedekind-real-numbers open import real-numbers.upper-dedekind-real-numbers
Definition
A pair of a lower Dedekind cut
L
and an upper Dedekind cut U
is
arithmetically located¶
if for any positive
rational number ε : ℚ⁺
, there
exists p, q : ℚ
where p ∈ L
and q ∈ U
, such that 0 < q - p < ε
.
Intuitively, when L
and U
are the lower and upper cuts of a real number x
,
then p
and q
are rational approximations of x
to within ε
.
This follows parts of Section 11 in [BT09].
Definitions
The predicate of being arithmetically located on pairs of lower and upper Dedekind real numbers
module _ {l1 l2 : Level} (x : lower-ℝ l1) (y : upper-ℝ l2) where arithmetically-located-lower-upper-ℝ : UU (l1 ⊔ l2) arithmetically-located-lower-upper-ℝ = (ε⁺ : ℚ⁺) → exists ( ℚ × ℚ) ( λ (p , q) → le-ℚ-Prop q (p +ℚ rational-ℚ⁺ ε⁺) ∧ cut-lower-ℝ x p ∧ cut-upper-ℝ y q)
Properties
Arithmetically located cuts are located
If a pair of lower and upper Dedekind cuts is arithmetically located, it is also located.
module _ {l1 l2 : Level} (x : lower-ℝ l1) (y : upper-ℝ l2) where abstract is-located-is-arithmetically-located-lower-upper-ℝ : arithmetically-located-lower-upper-ℝ x y → is-located-lower-upper-ℝ x y is-located-is-arithmetically-located-lower-upper-ℝ arithmetically-located p q p<q = elim-exists ( cut-lower-ℝ x p ∨ cut-upper-ℝ y q) ( λ (p' , q') (q'<p'+q-p , p'∈L , q'∈U) → rec-coproduct ( λ p<p' → inl-disjunction ( is-in-cut-le-ℚ-lower-ℝ x p p' p<p' p'∈L)) ( λ p'≤p → inr-disjunction ( is-in-cut-le-ℚ-upper-ℝ ( y) ( q') ( q) ( concatenate-le-leq-ℚ ( q') ( p' +ℚ (q -ℚ p)) ( q) ( q'<p'+q-p) ( tr ( leq-ℚ (p' +ℚ (q -ℚ p))) ( is-identity-right-conjugation-Ab abelian-group-add-ℚ p q) ( preserves-leq-left-add-ℚ (q -ℚ p) p' p p'≤p))) ( q'∈U))) ( decide-le-leq-ℚ p p')) ( arithmetically-located (positive-diff-le-ℚ p q p<q))
References
- [BT09]
- Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone duality. Mathematical Structures in Computer Science, 19:757–838, 2009. URL: PaulTaylor.EU/ASD/dedras/, doi:10.1017/S0960129509007695.
Recent changes
- 2025-02-16. Louis Wasserman. Break the Dedekind reals into lower and upper Dedekind reals (#1314).
- 2025-02-08. Fredrik Bakke. Functorial action of existential quantifications, and applications in
real-numbers
(#1298).