Arithmetically located Dedekind cuts

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2025-02-08.
Last modified on 2025-02-16.

{-# OPTIONS --lossy-unification #-}

module real-numbers.arithmetically-located-dedekind-cuts where
Imports
open import elementary-number-theory.addition-rational-numbers
open import elementary-number-theory.additive-group-of-rational-numbers
open import elementary-number-theory.difference-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.binary-transport
open import foundation.cartesian-product-types
open import foundation.conjunction
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.disjunction
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.raising-universe-levels
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import group-theory.abelian-groups

open import real-numbers.dedekind-real-numbers
open import real-numbers.lower-dedekind-real-numbers
open import real-numbers.upper-dedekind-real-numbers

Definition

A pair of a lower Dedekind cut L and an upper Dedekind cut U is arithmetically located if for any positive rational number ε : ℚ⁺, there exists p, q : ℚ where p ∈ L and q ∈ U, such that 0 < q - p < ε. Intuitively, when L and U are the lower and upper cuts of a real number x, then p and q are rational approximations of x to within ε.

This follows parts of Section 11 in [BT09].

Definitions

The predicate of being arithmetically located on pairs of lower and upper Dedekind real numbers

module _
  {l1 l2 : Level} (x : lower-ℝ l1) (y : upper-ℝ l2)
  where

  arithmetically-located-lower-upper-ℝ : UU (l1  l2)
  arithmetically-located-lower-upper-ℝ =
    (ε⁺ : ℚ⁺) 
    exists
      (  × )
      ( λ (p , q)  le-ℚ-Prop q (p +ℚ rational-ℚ⁺ ε⁺) 
        cut-lower-ℝ x p 
        cut-upper-ℝ y q)

Properties

Arithmetically located cuts are located

If a pair of lower and upper Dedekind cuts is arithmetically located, it is also located.

module _
  {l1 l2 : Level} (x : lower-ℝ l1) (y : upper-ℝ l2)
  where

  abstract
    is-located-is-arithmetically-located-lower-upper-ℝ :
      arithmetically-located-lower-upper-ℝ x y 
      is-located-lower-upper-ℝ x y
    is-located-is-arithmetically-located-lower-upper-ℝ
      arithmetically-located p q p<q =
      elim-exists
        ( cut-lower-ℝ x p  cut-upper-ℝ y q)
        ( λ (p' , q') (q'<p'+q-p , p'∈L , q'∈U) 
          rec-coproduct
            ( λ p<p' 
              inl-disjunction
                ( is-in-cut-le-ℚ-lower-ℝ x p p' p<p' p'∈L))
            ( λ p'≤p 
              inr-disjunction
                ( is-in-cut-le-ℚ-upper-ℝ
                  ( y)
                  ( q')
                  ( q)
                  ( concatenate-le-leq-ℚ
                    ( q')
                    ( p' +ℚ (q -ℚ p))
                    ( q)
                    ( q'<p'+q-p)
                  ( tr
                    ( leq-ℚ (p' +ℚ (q -ℚ p)))
                    ( is-identity-right-conjugation-Ab abelian-group-add-ℚ p q)
                    ( preserves-leq-left-add-ℚ (q -ℚ p) p' p p'≤p)))
                  ( q'∈U)))
            ( decide-le-leq-ℚ p p'))
        ( arithmetically-located (positive-diff-le-ℚ p q p<q))

References

[BT09]
Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone duality. Mathematical Structures in Computer Science, 19:757–838, 2009. URL: PaulTaylor.EU/ASD/dedras/, doi:10.1017/S0960129509007695.

Recent changes