The axiom of dependent choice
Content created by Louis Wasserman.
Created on 2025-08-01.
Last modified on 2025-08-01.
module foundation.axiom-of-dependent-choice where
Imports
open import elementary-number-theory.natural-numbers open import foundation.axiom-of-choice open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.sets open import foundation.universe-levels
Idea
The
axiom of dependent choice¶
asserts that for every entire binary relation
R
on an inhabited type A
, there
exists f : ℕ → A
such that for all
n : ℕ
, R (f n) (f (succ-ℕ n))
.
Definition
module _ {l1 : Level} (A : Set l1) (inhabited-A : is-inhabited (type-Set A)) {l2 : Level} (R : Relation l2 (type-Set A)) (H : is-entire-Relation R) where instance-ADC : UU (l1 ⊔ l2) instance-ADC = is-inhabited (Σ (ℕ → type-Set A) (λ f → (n : ℕ) → R (f n) (f (succ-ℕ n)))) level-ADC : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) level-ADC l1 l2 = (A : Set l1) (inhabited-A : is-inhabited (type-Set A)) → (R : Relation l2 (type-Set A)) (H : is-entire-Relation R) → instance-ADC A inhabited-A R H ADC : UUω ADC = {l1 l2 : Level} → level-ADC l1 l2
Properties
The axiom of choice implies the axiom of dependent choice
level-ADC-level-AC0 : {l1 l2 : Level} → level-AC0 l1 (l1 ⊔ l2) → level-ADC l1 l2 level-ADC-level-AC0 ac0 A inhabited-A R entire-R = let open do-syntax-trunc-Prop ( is-inhabited-Prop ( Σ (ℕ → type-Set A) (λ f → (n : ℕ) → R (f n) (f (succ-ℕ n))))) in do f ← ac0 A (λ a → Σ (type-Set A) (R a)) entire-R a₀ ← inhabited-A let g = ind-ℕ a₀ (λ _ → pr1 ∘ f) unit-trunc-Prop (g , pr2 ∘ f ∘ g) ADC-AC0 : AC0 → ADC ADC-AC0 ac0 = level-ADC-level-AC0 ac0
See also
External links
- Axiom of dependent choice at Wikidata
Recent changes
- 2025-08-01. Louis Wasserman. Axioms of countable and dependent choice (#1463).