The precategory of finite species
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2024-03-11.
module species.precategory-of-finite-species where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import species.morphisms-finite-species open import species.species-of-finite-types
Idea
The precategory of finite species¶ consists of finite species and homomorphisms of finite species.
Definition
species-𝔽-Large-Precategory : (l : Level) → Large-Precategory (λ l1 → lsuc l ⊔ lsuc l1) (λ l2 l3 → lsuc l ⊔ l2 ⊔ l3) species-𝔽-Large-Precategory l = make-Large-Precategory ( species-𝔽 l) ( hom-set-species-𝔽) ( λ {l1} {l2} {l3} {F} {G} {H} → comp-hom-species-𝔽 F G H) ( λ {l1} {F} → id-hom-species-𝔽 F) ( λ {l1} {l2} {l3} {l4} {F} {G} {H} {K} → associative-comp-hom-species-𝔽 F G H K) ( λ {l1} {l2} {F} {G} → left-unit-law-comp-hom-species-𝔽 F G) ( λ {l1} {l2} {F} {G} → right-unit-law-comp-hom-species-𝔽 F G)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-05-06. Egbert Rijke. Big cleanup continued (#597).
- 2023-03-21. Victor Blanchi. Associativity of species composition (#478).