Differentiability of constant functions on proper closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
{-# OPTIONS --lossy-unification #-} module analysis.differentiability-constant-real-maps-on-proper-closed-intervals-real-numbers where
Imports
open import analysis.differentiable-real-maps-on-proper-closed-intervals-real-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.large-posets open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
Given a
proper closed interval
[a, b] on the real numbers, any
constant function on [a, b], x ↦ c, is
differentiable,
with derivative the constant zero function.
Proof
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (c : ℝ l2) where abstract is-derivative-const-zero-const-real-map-proper-closed-interval-ℝ : is-derivative-real-map-proper-closed-interval-ℝ ( [a,b]) ( const (type-proper-closed-interval-ℝ l1 [a,b]) c) ( const ( type-proper-closed-interval-ℝ l1 [a,b]) ( raise-zero-ℝ (l1 ⊔ l2))) is-derivative-const-zero-const-real-map-proper-closed-interval-ℝ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-derivative-modulus-of-real-map-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( one-ℚ⁺ , λ x y _ → chain-of-inequalities dist-ℝ (c -ℝ c) (raise-zero-ℝ (l1 ⊔ l2) *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ zero-ℝ zero-ℝ by leq-sim-ℝ ( preserves-dist-sim-ℝ ( right-inverse-law-add-ℝ c) ( similarity-reasoning-ℝ raise-zero-ℝ (l1 ⊔ l2) *ℝ (pr1 y -ℝ pr1 x) ~ℝ zero-ℝ *ℝ (pr1 y -ℝ pr1 x) by preserves-sim-right-mul-ℝ _ _ _ ( symmetric-sim-ℝ (sim-raise-ℝ _ zero-ℝ)) ~ℝ zero-ℝ by left-zero-law-mul-ℝ _)) ≤ zero-ℝ by leq-sim-ℝ (diagonal-dist-ℝ zero-ℝ) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by is-nonnegative-real-ℝ⁰⁺ ( nonnegative-real-ℚ⁺ ε *ℝ⁰⁺ nonnegative-dist-ℝ _ _))) const-differentiable-real-map-proper-closed-interval-ℝ : {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (c : ℝ l2) → differentiable-real-map-proper-closed-interval-ℝ l2 [a,b] const-differentiable-real-map-proper-closed-interval-ℝ {l1} {l2} [a,b] c = ( const (type-proper-closed-interval-ℝ l1 [a,b]) c , const (type-proper-closed-interval-ℝ l1 [a,b]) (raise-zero-ℝ (l1 ⊔ l2)) , is-derivative-const-zero-const-real-map-proper-closed-interval-ℝ [a,b] c)
Recent changes
- 2026-01-30. Louis Wasserman. Refactor differentiable functions (#1774).