Upper sets of large posets
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module order-theory.upper-sets-large-posets where
Imports
open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets
Idea
An upper set or upwards closed set in a large poset is a large subposet that is upwards closed, i.e., that satisfies the condition that
∀ (x y : P), (x ≤ y) → x ∈ S → y ∈ S.
Definitions
The predicate of being an upper set
module _ {α γ : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) (S : Large-Subposet γ P) where is-upper-set-Large-Subposet : UUω is-upper-set-Large-Subposet = {l1 l2 : Level} (x : type-Large-Poset P l1) (y : type-Large-Poset P l2) → leq-Large-Poset P x y → is-in-Large-Subposet P S x → is-in-Large-Subposet P S y
Upper sets of a large poset
module _ {α : Level → Level} {β : Level → Level → Level} (γ : Level → Level) (P : Large-Poset α β) where record upper-set-Large-Poset : UUω where field large-subposet-upper-set-Large-Poset : Large-Subposet γ P is-upper-set-upper-set-Large-Poset : is-upper-set-Large-Subposet P large-subposet-upper-set-Large-Poset open upper-set-Large-Poset public
See also
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).