Repetitions of values
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.
Created on 2023-04-08.
Last modified on 2024-04-11.
module univalent-combinatorics.repetitions-of-values where open import foundation.repetitions-of-values public
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.well-ordering-principle-standard-finite-types open import foundation.cartesian-product-types open import foundation.decidable-types open import foundation.identity-types open import foundation.injective-maps open import foundation.negated-equality open import foundation.negation open import foundation.sets open import univalent-combinatorics.decidable-dependent-function-types open import univalent-combinatorics.decidable-propositions open import univalent-combinatorics.dependent-pair-types open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.standard-finite-types
Idea
A repetition of values of a function f : A → B
consists of a pair
a a' : A
such that a ≠ a'
and f a = f a'
.
Properties
If f : Fin k → Fin l
is not injective, then it has a repetition of values
b
repetition-of-values-is-not-injective-Fin : (k l : ℕ) (f : Fin k → Fin l) → is-not-injective f → repetition-of-values f repetition-of-values-is-not-injective-Fin k l f N = pair (pair x (pair y (pr2 w))) (pr1 w) where u : Σ (Fin k) (λ x → ¬ ((y : Fin k) → f x = f y → x = y)) u = exists-not-not-for-all-Fin k ( λ x → is-decidable-Π-Fin k ( λ y → is-decidable-function-type ( has-decidable-equality-Fin l (f x) (f y)) ( has-decidable-equality-Fin k x y))) ( λ f → N (λ {x} {y} → f x y)) x : Fin k x = pr1 u H : ¬ ((y : Fin k) → f x = f y → x = y) H = pr2 u v : Σ (Fin k) (λ y → ¬ (f x = f y → x = y)) v = exists-not-not-for-all-Fin k ( λ y → is-decidable-function-type ( has-decidable-equality-Fin l (f x) (f y)) ( has-decidable-equality-Fin k x y)) ( H) y : Fin k y = pr1 v K : ¬ (f x = f y → x = y) K = pr2 v w : (f x = f y) × (x ≠ y) w = exists-not-not-for-all-count ( λ _ → Id x y) ( λ _ → has-decidable-equality-Fin k x y) ( count-is-decidable-is-prop ( is-set-Fin l (f x) (f y)) ( has-decidable-equality-Fin l (f x) (f y))) ( K)
On the standard finite sets, is-repetition-of-values f x
is decidable
is-decidable-is-repetition-of-values-Fin :
{k l : ℕ} (f : Fin k → Fin l) (x : Fin k) →
is-decidable (is-repetition-of-values f x)
is-decidable-is-repetition-of-values-Fin f x =
is-decidable-Σ-Fin
( λ y →
is-decidable-product
( is-decidable-neg (has-decidable-equality-Fin x y))
( has-decidable-equality-Fin (f x) (f y)))
On the standard finite sets, is-repeated-value f x
is decidable
is-decidable-is-repeated-value-Fin :
(k l : ℕ) (f : Fin k → Fin l) (x : Fin k) →
is-decidable (is-repeated-value f x)
is-decidable-is-repeated-value-Fin k l f x =
is-decidable-Σ-Fin k
( λ y →
is-decidable-product
( is-decidable-neg (has-decidable-equality-Fin k x y))
( has-decidable-equality-Fin l (f x) (f y)))
The predicate that f
maps two different elements to the same value
This remains to be defined. #748
On the standard finite sets, has-repetition-of-values f
is decidable
is-decidable-has-repetition-of-values-Fin :
(k l : ℕ) (f : Fin k → Fin l) → is-decidable (has-repetition-of-values f)
is-decidable-has-repetition-of-values-Fin k l f =
is-decidable-Σ-Fin k (is-decidable-is-repetition-of-values-Fin k l f)
If f
is not injective, then it has a repetition-of-values
is-injective-map-Fin-zero-Fin :
{k : ℕ} (f : Fin zero-ℕ → Fin k) → is-injective f
is-injective-map-Fin-zero-Fin f {()}
is-injective-map-Fin-one-Fin : {k : ℕ} (f : Fin 1 → Fin k) → is-injective f
is-injective-map-Fin-one-Fin f {inr star} {inr star} p = refl
has-repetition-of-values-is-not-injective-Fin :
(k l : ℕ) (f : Fin l → Fin k) →
is-not-injective f → has-repetition-of-values f
has-repetition-of-values-is-not-injective-Fin k zero-ℕ f H =
ex-falso (H (is-injective-map-Fin-zero-Fin {k} f))
has-repetition-of-values-is-not-injective-Fin k (succ-ℕ l) f H with
is-decidable-is-repetition-of-values-Fin (succ-ℕ l) k f (inr star)
... | inl r = pair (inr star) r
... | inr g =
α (has-repetition-of-values-is-not-injective-Fin k l (f ∘ inl) K)
where
K : is-not-injective (f ∘ inl)
K I = H (λ {x} {y} → J x y)
where
J : (x y : Fin (succ-ℕ l)) → Id (f x) (f y) → Id x y
J (inl x) (inl y) p = ap inl (I p)
J (inl x) (inr star) p =
ex-falso (g (triple (inl x) (Eq-Fin-eq (succ-ℕ l)) (inv p)))
J (inr star) (inl y) p =
ex-falso (g (triple (inl y) (Eq-Fin-eq (succ-ℕ l)) p))
J (inr star) (inr star) p = refl
α : has-repetition-of-values (f ∘ inl) → has-repetition-of-values f
α (pair x (pair y (pair h q))) =
pair (inl x) (pair (inl y) (pair (λ r → h (is-injective-inl r)) q))
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-28. Fredrik Bakke. Equivalence injective type families (#1009).
- 2024-01-17. Egbert Rijke. Reformatting commented blocks of code (#1004).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).