Repetitions of values

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2023-04-08.
Last modified on 2025-08-14.

module univalent-combinatorics.repetitions-of-values where

open import foundation.repetitions-of-values public
Imports
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.well-ordering-principle-standard-finite-types

open import foundation.cartesian-product-types
open import foundation.decidable-types
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.negated-equality
open import foundation.negation
open import foundation.noninjective-maps
open import foundation.pairs-of-distinct-elements
open import foundation.sets

open import univalent-combinatorics.counting
open import univalent-combinatorics.counting-decidable-subtypes
open import univalent-combinatorics.counting-dependent-pair-types
open import univalent-combinatorics.decidable-dependent-function-types
open import univalent-combinatorics.decidable-dependent-pair-types
open import univalent-combinatorics.decidable-propositions
open import univalent-combinatorics.dependent-pair-types
open import univalent-combinatorics.equality-standard-finite-types
open import univalent-combinatorics.standard-finite-types

Idea

A repetition of values of a map f : A → B consists of a pair of distinct elements x ≠ y of A that get mapped to the same element in B: f x = f y.

Properties

If f : Fin k → Fin l is not injective, then it has a repetition of values

repetition-of-values-is-not-injective-Fin :
  (k l : ) (f : Fin k  Fin l) 
  is-not-injective f  repetition-of-values f
repetition-of-values-is-not-injective-Fin k l f N =
  pair (pair x (pair y (pr2 w))) (pr1 w)
  where
  u : Σ (Fin k)  x  ¬ ((y : Fin k)  f x  f y  x  y))
  u =
    exists-not-not-for-all-Fin k
      ( λ x 
        is-decidable-Π-Fin k
          ( λ y 
            is-decidable-function-type
              ( has-decidable-equality-Fin l (f x) (f y))
              ( has-decidable-equality-Fin k x y)))
      ( λ f  N  {x} {y}  f x y))
  x : Fin k
  x = pr1 u
  H : ¬ ((y : Fin k)  f x  f y  x  y)
  H = pr2 u
  v : Σ (Fin k)  y  ¬ (f x  f y  x  y))
  v = exists-not-not-for-all-Fin k
      ( λ y 
        is-decidable-function-type
          ( has-decidable-equality-Fin l (f x) (f y))
          ( has-decidable-equality-Fin k x y))
      ( H)
  y : Fin k
  y = pr1 v
  K : ¬ (f x  f y  x  y)
  K = pr2 v
  w : (f x  f y) × (x  y)
  w = exists-not-not-for-all-count
      ( λ _  Id x y)
      ( λ _ 
        has-decidable-equality-Fin k x y)
      ( count-is-decidable-is-prop
        ( is-set-Fin l (f x) (f y))
        ( has-decidable-equality-Fin l (f x) (f y)))
      ( K)

Comment. We could modify this construction to provide proof that i < j rather than i ≠ j.

On the standard finite sets, we can count the number of pairs of distinct elements

count-pair-of-distinct-elements-Fin :
  (k : )  count (pair-of-distinct-elements (Fin k))
count-pair-of-distinct-elements-Fin k =
  count-Σ-Fin k
    ( λ x 
      count-decidable-subtype-Fin k
        ( λ y  neg-Decidable-Prop (decidable-Eq-Fin k x y)))

On the standard finite sets, is-repeated-value f x is decidable

is-decidable-is-repeated-value-Fin :
  (k l : ) (f : Fin k  Fin l) (x : Fin k) 
  is-decidable (is-repeated-value f x)
is-decidable-is-repeated-value-Fin k l f x =
  is-decidable-Σ-count
    ( count-decidable-subtype-Fin k
      ( λ y  neg-Decidable-Prop (decidable-Eq-Fin k x y)))
    ( λ (y , p)  has-decidable-equality-Fin l (f x) (f y))

On the standard finite sets, repetition-of-values f is decidable

is-decidable-repetition-of-values-Fin :
  (k l : ) (f : Fin k  Fin l)  is-decidable (repetition-of-values f)
is-decidable-repetition-of-values-Fin k l f =
  is-decidable-Σ-count
    ( count-pair-of-distinct-elements-Fin k)
    ( λ (x , y , _)  has-decidable-equality-Fin l (f x) (f y))

See also

Recent changes