Metric quotients of metric spaces
Content created by malarbol.
Created on 2026-01-31.
Last modified on 2026-01-31.
{-# OPTIONS --lossy-unification #-} module metric-spaces.metric-quotients-of-metric-spaces where
Imports
open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.set-quotients open import foundation.sets open import foundation.subtypes open import foundation.universal-property-set-quotients open import foundation.universe-levels open import metric-spaces.equality-of-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.unit-map-metric-quotients-of-pseudometric-spaces
Idea
The metric quotient
of the underlying pseudometric space of
a metric space M is
isometrically equivalent to M.
Definitions
Metric quotients of metric spaces
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where metric-quotient-Metric-Space : Metric-Space (l1 ⊔ l2) (l1 ⊔ l2) metric-quotient-Metric-Space = metric-quotient-Pseudometric-Space (pseudometric-Metric-Space M)
The unit map from a metric space into its metric quotient
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where map-unit-metric-quotient-Metric-Space : map-Metric-Space M (metric-quotient-Metric-Space M) map-unit-metric-quotient-Metric-Space = map-unit-metric-quotient-Pseudometric-Space (pseudometric-Metric-Space M) compute-map-unit-metric-quotient-Metric-Space : ( X : type-metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space M)) → { x : type-Metric-Space M} → is-in-class-metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space M) ( X) ( x) → map-unit-metric-quotient-Metric-Space x = X compute-map-unit-metric-quotient-Metric-Space = compute-map-unit-metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space M)
Theorem
The unit map from a metric space into its metric quotient is an equivalence
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where abstract is-contr-map-map-unit-metric-quotient-Metric-Space : is-contr-map (map-unit-metric-quotient-Metric-Space M) is-contr-map-map-unit-metric-quotient-Metric-Space X = let open do-syntax-trunc-Prop ( is-contr-Prop ( fiber (map-unit-metric-quotient-Metric-Space M) X)) in do ( x , x∈X) ← is-inhabited-subtype-set-quotient ( equivalence-relation-sim-Metric-Space M) ( X) let center-fiber : fiber (map-unit-metric-quotient-Metric-Space M) X center-fiber = ( x , compute-map-unit-metric-quotient-Metric-Space M X x∈X) contraction-fiber : ( y : fiber (map-unit-metric-quotient-Metric-Space M) X) → center-fiber = y contraction-fiber (y , [y]=X) = eq-type-subtype ( λ z → eq-prop-Metric-Space ( metric-quotient-Metric-Space M) ( map-unit-metric-quotient-Metric-Space M z) ( X)) ( eq-sim-Metric-Space M x y ( apply-effectiveness-quotient-map ( equivalence-relation-sim-Metric-Space M) ( compute-map-unit-metric-quotient-Metric-Space M X x∈X ∙ inv [y]=X))) ( center-fiber , contraction-fiber) is-equiv-map-unit-metric-quotient-Metric-Space : is-equiv (map-unit-metric-quotient-Metric-Space M) is-equiv-map-unit-metric-quotient-Metric-Space = is-equiv-is-contr-map is-contr-map-map-unit-metric-quotient-Metric-Space
Applications
The isometric equivalence between a metric space and its metric quotient
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where isometric-equiv-unit-metric-quotient-Metric-Space' : isometric-equiv-Metric-Space' ( M) ( metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space M)) isometric-equiv-unit-metric-quotient-Metric-Space' = ( map-unit-metric-quotient-Metric-Space M , is-equiv-map-unit-metric-quotient-Metric-Space M , is-isometry-map-unit-metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space M))
The construction of the quotient metric space of a pseudometric space is idempotent
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) where is-idempotent-metric-quotient-Pseudometric-Space : metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space ( metric-quotient-Pseudometric-Space M)) = metric-quotient-Pseudometric-Space M is-idempotent-metric-quotient-Pseudometric-Space = inv ( eq-isometric-equiv-Metric-Space' ( metric-quotient-Pseudometric-Space M) ( metric-quotient-Pseudometric-Space ( pseudometric-Metric-Space ( metric-quotient-Pseudometric-Space M))) ( isometric-equiv-unit-metric-quotient-Metric-Space' ( metric-quotient-Pseudometric-Space M)))
Recent changes
- 2026-01-31. malarbol. Rename unit map metric quotient (#1795).