Divisibility of integers
Content created by Egbert Rijke, Fredrik Bakke, Fernando Chu, Jonathan Prieto-Cubides, Bryan Lu, malarbol, Julian KG, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2024-09-23.
module elementary-number-theory.divisibility-integers where
Imports
open import elementary-number-theory.absolute-value-integers open import elementary-number-theory.addition-integers open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.equality-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-integers open import elementary-number-theory.nonpositive-integers open import elementary-number-theory.nonzero-integers open import elementary-number-theory.positive-and-negative-integers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.negation open import foundation.propositional-maps open import foundation.propositions open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels
Idea
An integer m
is said to divide an integer n
if there exists an integer
k
equipped with an identification km = n
. Using the
Curry–Howard interpretation
of logic into type theory, we express divisibility as follows:
div-ℤ m n := Σ (k : ℤ), k *ℤ m = n.
If n
is a nonzero integer, then div-ℤ m n
is always a proposition in the
sense that the type div-ℤ m n
contains at most one element.
We also introduce unit integers, which are integers that divide the integer
1
, and an equivalence relation sim-unit-ℤ
on the integers in which two
integers x
and y
are equivalent if there exists a unit integer u
such that
ux = y
. These two concepts help establish further properties of the
divisibility relation on the integers.
Definitions
div-ℤ : ℤ → ℤ → UU lzero div-ℤ d x = Σ ℤ (λ k → k *ℤ d = x) quotient-div-ℤ : (x y : ℤ) → div-ℤ x y → ℤ quotient-div-ℤ x y H = pr1 H eq-quotient-div-ℤ : (x y : ℤ) (H : div-ℤ x y) → (quotient-div-ℤ x y H) *ℤ x = y eq-quotient-div-ℤ x y H = pr2 H eq-quotient-div-ℤ' : (x y : ℤ) (H : div-ℤ x y) → x *ℤ (quotient-div-ℤ x y H) = y eq-quotient-div-ℤ' x y H = commutative-mul-ℤ x (quotient-div-ℤ x y H) ∙ eq-quotient-div-ℤ x y H div-quotient-div-ℤ : (d x : ℤ) (H : div-ℤ d x) → div-ℤ (quotient-div-ℤ d x H) x pr1 (div-quotient-div-ℤ d x (u , p)) = d pr2 (div-quotient-div-ℤ d x (u , p)) = commutative-mul-ℤ d u ∙ p concatenate-eq-div-ℤ : {x y z : ℤ} → x = y → div-ℤ y z → div-ℤ x z concatenate-eq-div-ℤ refl p = p concatenate-div-eq-ℤ : {x y z : ℤ} → div-ℤ x y → y = z → div-ℤ x z concatenate-div-eq-ℤ p refl = p concatenate-eq-div-eq-ℤ : {x y z w : ℤ} → x = y → div-ℤ y z → z = w → div-ℤ x w concatenate-eq-div-eq-ℤ refl p refl = p
Unit integers
is-unit-ℤ : ℤ → UU lzero is-unit-ℤ x = div-ℤ x one-ℤ unit-ℤ : UU lzero unit-ℤ = Σ ℤ is-unit-ℤ int-unit-ℤ : unit-ℤ → ℤ int-unit-ℤ = pr1 is-unit-int-unit-ℤ : (x : unit-ℤ) → is-unit-ℤ (int-unit-ℤ x) is-unit-int-unit-ℤ = pr2 div-is-unit-ℤ : (x y : ℤ) → is-unit-ℤ x → div-ℤ x y pr1 (div-is-unit-ℤ x y (pair d p)) = y *ℤ d pr2 (div-is-unit-ℤ x y (pair d p)) = associative-mul-ℤ y d x ∙ (ap (y *ℤ_) p ∙ right-unit-law-mul-ℤ y)
The equivalence relation sim-unit-ℤ
We define the equivalence relation sim-unit-ℤ
in such a way that
sim-unit-ℤ x y
is always a proposition.
presim-unit-ℤ : ℤ → ℤ → UU lzero presim-unit-ℤ x y = Σ unit-ℤ (λ u → (pr1 u) *ℤ x = y) sim-unit-ℤ : ℤ → ℤ → UU lzero sim-unit-ℤ x y = ¬ (is-zero-ℤ x × is-zero-ℤ y) → presim-unit-ℤ x y
Properties
Divisibility by a nonzero integer is a property
is-prop-div-ℤ : (d x : ℤ) → is-nonzero-ℤ d → is-prop (div-ℤ d x) is-prop-div-ℤ d x f = is-prop-map-is-emb (is-emb-right-mul-ℤ d f) x
The divisibility relation is a preorder
Note that the divisibility relation on the integers is not antisymmetric.
refl-div-ℤ : is-reflexive div-ℤ pr1 (refl-div-ℤ x) = one-ℤ pr2 (refl-div-ℤ x) = left-unit-law-mul-ℤ x transitive-div-ℤ : is-transitive div-ℤ pr1 (transitive-div-ℤ x y z (pair e q) (pair d p)) = e *ℤ d pr2 (transitive-div-ℤ x y z (pair e q) (pair d p)) = ( associative-mul-ℤ e d x) ∙ ( ( ap (e *ℤ_) p) ∙ ( q))
Every integer is divisible by 1
div-one-ℤ : (x : ℤ) → div-ℤ one-ℤ x pr1 (div-one-ℤ x) = x pr2 (div-one-ℤ x) = right-unit-law-mul-ℤ x
Every integer divides 0
div-zero-ℤ : (x : ℤ) → div-ℤ x zero-ℤ pr1 (div-zero-ℤ x) = zero-ℤ pr2 (div-zero-ℤ x) = left-zero-law-mul-ℤ x
Every integer that is divisible by 0
is 0
is-zero-div-zero-ℤ : (x : ℤ) → div-ℤ zero-ℤ x → is-zero-ℤ x is-zero-div-zero-ℤ x (pair d p) = inv p ∙ right-zero-law-mul-ℤ d
The quotient of x
by one is x
eq-quotient-div-is-one-ℤ : (k x : ℤ) → is-one-ℤ k → (H : div-ℤ k x) → quotient-div-ℤ k x H = x eq-quotient-div-is-one-ℤ .one-ℤ x refl H = ap ( quotient-div-ℤ one-ℤ x) ( inv ( eq-is-prop' ( is-prop-div-ℤ one-ℤ x (λ ())) ( div-one-ℤ x) ( H)))
If k
divides x
and k
is 0
then x
is 0
is-zero-is-zero-div-ℤ : (x k : ℤ) → div-ℤ k x → is-zero-ℤ k → is-zero-ℤ x is-zero-is-zero-div-ℤ x .zero-ℤ k-div-x refl = is-zero-div-zero-ℤ x k-div-x
If x
divides both y
and z
, then it divides y + z
div-add-ℤ : (x y z : ℤ) → div-ℤ x y → div-ℤ x z → div-ℤ x (y +ℤ z) pr1 (div-add-ℤ x y z (pair d p) (pair e q)) = d +ℤ e pr2 (div-add-ℤ x y z (pair d p) (pair e q)) = ( right-distributive-mul-add-ℤ d e x) ∙ ( ap-add-ℤ p q)
If x
divides y
then x
divides any multiple of y
div-mul-ℤ : (k x y : ℤ) → div-ℤ x y → div-ℤ x (k *ℤ y) div-mul-ℤ k x y = transitive-div-ℤ x y (k *ℤ y) (k , refl)
If x
divides y
then it divides -y
div-neg-ℤ : (x y : ℤ) → div-ℤ x y → div-ℤ x (neg-ℤ y) pr1 (div-neg-ℤ x y (pair d p)) = neg-ℤ d pr2 (div-neg-ℤ x y (pair d p)) = left-negative-law-mul-ℤ d x ∙ ap neg-ℤ p
If x
divides y
then -x
divides y
neg-div-ℤ : (x y : ℤ) → div-ℤ x y → div-ℤ (neg-ℤ x) y pr1 (neg-div-ℤ x y (pair d p)) = neg-ℤ d pr2 (neg-div-ℤ x y (pair d p)) = equational-reasoning (neg-ℤ d) *ℤ (neg-ℤ x) = neg-ℤ (d *ℤ (neg-ℤ x)) by left-negative-law-mul-ℤ d (neg-ℤ x) = neg-ℤ (neg-ℤ (d *ℤ x)) by ap neg-ℤ (right-negative-law-mul-ℤ d x) = (d *ℤ x) by neg-neg-ℤ (d *ℤ x) = y by p
Multiplication preserves divisibility
preserves-div-mul-ℤ : (k x y : ℤ) → div-ℤ x y → div-ℤ (k *ℤ x) (k *ℤ y) pr1 (preserves-div-mul-ℤ k x y (pair q p)) = q pr2 (preserves-div-mul-ℤ k x y (pair q p)) = ( inv (associative-mul-ℤ q k x)) ∙ ( ( ap (_*ℤ x) (commutative-mul-ℤ q k)) ∙ ( ( associative-mul-ℤ k q x) ∙ ( ap (k *ℤ_) p)))
Multiplication by a nonzero number reflects divisibility
reflects-div-mul-ℤ : (k x y : ℤ) → is-nonzero-ℤ k → div-ℤ (k *ℤ x) (k *ℤ y) → div-ℤ x y pr1 (reflects-div-mul-ℤ k x y H (pair q p)) = q pr2 (reflects-div-mul-ℤ k x y H (pair q p)) = is-injective-left-mul-ℤ k H ( ( inv (associative-mul-ℤ k q x)) ∙ ( ( ap (_*ℤ x) (commutative-mul-ℤ k q)) ∙ ( ( associative-mul-ℤ q k x) ∙ ( p))))
If a nonzero number d
divides y
, then dx
divides y
if and only if x
divides the quotient y/d
div-quotient-div-div-ℤ : (x y d : ℤ) (H : div-ℤ d y) → is-nonzero-ℤ d → div-ℤ (d *ℤ x) y → div-ℤ x (quotient-div-ℤ d y H) div-quotient-div-div-ℤ x y d H f K = reflects-div-mul-ℤ d x ( quotient-div-ℤ d y H) ( f) ( tr (div-ℤ (d *ℤ x)) (inv (eq-quotient-div-ℤ' d y H)) K) div-div-quotient-div-ℤ : (x y d : ℤ) (H : div-ℤ d y) → div-ℤ x (quotient-div-ℤ d y H) → div-ℤ (d *ℤ x) y div-div-quotient-div-ℤ x y d H K = tr ( div-ℤ (d *ℤ x)) ( eq-quotient-div-ℤ' d y H) ( preserves-div-mul-ℤ d x (quotient-div-ℤ d y H) K)
Comparison of divisibility on ℕ
and on ℤ
div-int-div-ℕ : {x y : ℕ} → div-ℕ x y → div-ℤ (int-ℕ x) (int-ℕ y) pr1 (div-int-div-ℕ {x} {y} (pair d p)) = int-ℕ d pr2 (div-int-div-ℕ {x} {y} (pair d p)) = mul-int-ℕ d x ∙ ap int-ℕ p div-div-int-ℕ : {x y : ℕ} → div-ℤ (int-ℕ x) (int-ℕ y) → div-ℕ x y div-div-int-ℕ {zero-ℕ} {y} (pair d p) = div-eq-ℕ zero-ℕ y ( inv (is-injective-int-ℕ (is-zero-div-zero-ℤ (int-ℕ y) (pair d p)))) pr1 (div-div-int-ℕ {succ-ℕ x} {y} (pair d p)) = abs-ℤ d pr2 (div-div-int-ℕ {succ-ℕ x} {y} (pair d p)) = is-injective-int-ℕ ( ( inv (mul-int-ℕ (abs-ℤ d) (succ-ℕ x))) ∙ ( ( ap ( _*ℤ (inr (inr x))) { int-abs-ℤ d} { d} ( int-abs-is-nonnegative-ℤ d ( is-nonnegative-left-factor-mul-ℤ { d} { inr (inr x)} ( is-nonnegative-eq-ℤ (inv p) (is-nonnegative-int-ℕ y)) ( star)))) ∙ ( p)))
An integer is a unit if and only if it is 1
or -1
is-one-or-neg-one-ℤ : ℤ → UU lzero is-one-or-neg-one-ℤ x = (is-one-ℤ x) + (is-neg-one-ℤ x) is-unit-one-ℤ : is-unit-ℤ one-ℤ is-unit-one-ℤ = refl-div-ℤ one-ℤ one-unit-ℤ : unit-ℤ pr1 one-unit-ℤ = one-ℤ pr2 one-unit-ℤ = is-unit-one-ℤ is-unit-is-one-ℤ : (x : ℤ) → is-one-ℤ x → is-unit-ℤ x is-unit-is-one-ℤ .one-ℤ refl = is-unit-one-ℤ is-unit-neg-one-ℤ : is-unit-ℤ neg-one-ℤ pr1 is-unit-neg-one-ℤ = neg-one-ℤ pr2 is-unit-neg-one-ℤ = refl neg-one-unit-ℤ : unit-ℤ pr1 neg-one-unit-ℤ = neg-one-ℤ pr2 neg-one-unit-ℤ = is-unit-neg-one-ℤ is-unit-is-neg-one-ℤ : (x : ℤ) → is-neg-one-ℤ x → is-unit-ℤ x is-unit-is-neg-one-ℤ .neg-one-ℤ refl = is-unit-neg-one-ℤ is-unit-is-one-or-neg-one-ℤ : (x : ℤ) → is-one-or-neg-one-ℤ x → is-unit-ℤ x is-unit-is-one-or-neg-one-ℤ x (inl p) = is-unit-is-one-ℤ x p is-unit-is-one-or-neg-one-ℤ x (inr p) = is-unit-is-neg-one-ℤ x p is-one-or-neg-one-is-unit-ℤ : (x : ℤ) → is-unit-ℤ x → is-one-or-neg-one-ℤ x is-one-or-neg-one-is-unit-ℤ (inl zero-ℕ) (pair d p) = inr refl is-one-or-neg-one-is-unit-ℤ (inl (succ-ℕ x)) (pair (inl zero-ℕ) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ neg-one-ℤ (inl (succ-ℕ x)))) is-one-or-neg-one-is-unit-ℤ (inl (succ-ℕ x)) (pair (inl (succ-ℕ d)) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ (inl (succ-ℕ d)) (inl (succ-ℕ x)))) is-one-or-neg-one-is-unit-ℤ (inl (succ-ℕ x)) (pair (inr (inl star)) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ zero-ℤ (inl (succ-ℕ x)))) is-one-or-neg-one-is-unit-ℤ (inl (succ-ℕ x)) (pair (inr (inr zero-ℕ)) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ one-ℤ (inl (succ-ℕ x)))) is-one-or-neg-one-is-unit-ℤ (inl (succ-ℕ x)) (pair (inr (inr (succ-ℕ d))) p) = ex-falso ( Eq-eq-ℤ (inv p ∙ compute-mul-ℤ (inr (inr (succ-ℕ d))) (inl (succ-ℕ x)))) is-one-or-neg-one-is-unit-ℤ (inr (inl star)) (pair d p) = ex-falso (Eq-eq-ℤ (inv (right-zero-law-mul-ℤ d) ∙ p)) is-one-or-neg-one-is-unit-ℤ (inr (inr zero-ℕ)) (pair d p) = inl refl is-one-or-neg-one-is-unit-ℤ (inr (inr (succ-ℕ x))) (pair (inl zero-ℕ) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ neg-one-ℤ (inr (inr (succ-ℕ x))))) is-one-or-neg-one-is-unit-ℤ (inr (inr (succ-ℕ x))) (pair (inl (succ-ℕ d)) p) = ex-falso ( Eq-eq-ℤ (inv p ∙ compute-mul-ℤ (inl (succ-ℕ d)) (inr (inr (succ-ℕ x))))) is-one-or-neg-one-is-unit-ℤ (inr (inr (succ-ℕ x))) (pair (inr (inl star)) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ zero-ℤ (inr (inr (succ-ℕ x))))) is-one-or-neg-one-is-unit-ℤ (inr (inr (succ-ℕ x))) (pair (inr (inr zero-ℕ)) p) = ex-falso (Eq-eq-ℤ (inv p ∙ compute-mul-ℤ one-ℤ (inr (inr (succ-ℕ x))))) is-one-or-neg-one-is-unit-ℤ (inr (inr (succ-ℕ x))) (pair (inr (inr (succ-ℕ d))) p) = ex-falso ( Eq-eq-ℤ ( inv p ∙ compute-mul-ℤ (inr (inr (succ-ℕ d))) (inr (inr (succ-ℕ x)))))
Units are idempotent
idempotent-is-unit-ℤ : {x : ℤ} → is-unit-ℤ x → x *ℤ x = one-ℤ idempotent-is-unit-ℤ {x} H = f (is-one-or-neg-one-is-unit-ℤ x H) where f : is-one-or-neg-one-ℤ x → x *ℤ x = one-ℤ f (inl refl) = refl f (inr refl) = refl abstract is-one-is-unit-int-ℕ : (x : ℕ) → is-unit-ℤ (int-ℕ x) → is-one-ℕ x is-one-is-unit-int-ℕ x H with is-one-or-neg-one-is-unit-ℤ (int-ℕ x) H ... | inl p = is-injective-int-ℕ p ... | inr p = ex-falso (tr is-nonnegative-ℤ p (is-nonnegative-int-ℕ x))
The product xy
is a unit if and only if both x
and y
are units
is-unit-mul-ℤ : (x y : ℤ) → is-unit-ℤ x → is-unit-ℤ y → is-unit-ℤ (x *ℤ y) pr1 (is-unit-mul-ℤ x y (pair d p) (pair e q)) = e *ℤ d pr2 (is-unit-mul-ℤ x y (pair d p) (pair e q)) = ( associative-mul-ℤ e d (x *ℤ y)) ∙ ( ( ap ( e *ℤ_) ( ( inv (associative-mul-ℤ d x y)) ∙ ( ap (_*ℤ y) p))) ∙ ( q)) mul-unit-ℤ : unit-ℤ → unit-ℤ → unit-ℤ pr1 (mul-unit-ℤ (pair x H) (pair y K)) = x *ℤ y pr2 (mul-unit-ℤ (pair x H) (pair y K)) = is-unit-mul-ℤ x y H K is-unit-left-factor-mul-ℤ : (x y : ℤ) → is-unit-ℤ (x *ℤ y) → is-unit-ℤ x pr1 (is-unit-left-factor-mul-ℤ x y (pair d p)) = d *ℤ y pr2 (is-unit-left-factor-mul-ℤ x y (pair d p)) = associative-mul-ℤ d y x ∙ (ap (d *ℤ_) (commutative-mul-ℤ y x) ∙ p) is-unit-right-factor-ℤ : (x y : ℤ) → is-unit-ℤ (x *ℤ y) → is-unit-ℤ y is-unit-right-factor-ℤ x y (pair d p) = is-unit-left-factor-mul-ℤ y x ( pair d (ap (d *ℤ_) (commutative-mul-ℤ y x) ∙ p))
The relations presim-unit-ℤ
and sim-unit-ℤ
are logically equivalent
sim-unit-presim-unit-ℤ : {x y : ℤ} → presim-unit-ℤ x y → sim-unit-ℤ x y sim-unit-presim-unit-ℤ {x} {y} H f = H presim-unit-sim-unit-ℤ : {x y : ℤ} → sim-unit-ℤ x y → presim-unit-ℤ x y presim-unit-sim-unit-ℤ {inl x} {inl y} H = H (λ t → Eq-eq-ℤ (pr1 t)) presim-unit-sim-unit-ℤ {inl x} {inr y} H = H (λ t → Eq-eq-ℤ (pr1 t)) presim-unit-sim-unit-ℤ {inr x} {inl y} H = H (λ t → Eq-eq-ℤ (pr2 t)) pr1 (presim-unit-sim-unit-ℤ {inr (inl star)} {inr (inl star)} H) = one-unit-ℤ pr2 (presim-unit-sim-unit-ℤ {inr (inl star)} {inr (inl star)} H) = refl presim-unit-sim-unit-ℤ {inr (inl star)} {inr (inr y)} H = H (λ t → Eq-eq-ℤ (pr2 t)) presim-unit-sim-unit-ℤ {inr (inr x)} {inr (inl star)} H = H (λ t → Eq-eq-ℤ (pr1 t)) presim-unit-sim-unit-ℤ {inr (inr x)} {inr (inr y)} H = H (λ t → Eq-eq-ℤ (pr1 t))
The relations presim-unit-ℤ
and sim-unit-ℤ
relate zero-ℤ
only to itself
is-nonzero-presim-unit-ℤ : {x y : ℤ} → presim-unit-ℤ x y → is-nonzero-ℤ x → is-nonzero-ℤ y is-nonzero-presim-unit-ℤ {x} {y} (pair (pair v (pair u α)) β) f p = Eq-eq-ℤ (ap (_*ℤ u) (inv q) ∙ (commutative-mul-ℤ v u ∙ α)) where q : is-zero-ℤ v q = is-injective-right-mul-ℤ x f {v} {zero-ℤ} (β ∙ p) is-nonzero-sim-unit-ℤ : {x y : ℤ} → sim-unit-ℤ x y → is-nonzero-ℤ x → is-nonzero-ℤ y is-nonzero-sim-unit-ℤ H f = is-nonzero-presim-unit-ℤ (H (f ∘ pr1)) f is-zero-sim-unit-ℤ : {x y : ℤ} → sim-unit-ℤ x y → is-zero-ℤ x → is-zero-ℤ y is-zero-sim-unit-ℤ {x} {y} H p = double-negation-elim-is-decidable ( has-decidable-equality-ℤ y zero-ℤ) ( λ g → g (inv (β g) ∙ (ap ((u g) *ℤ_) p ∙ right-zero-law-mul-ℤ (u g)))) where K : is-nonzero-ℤ y → presim-unit-ℤ x y K g = H (λ (u , v) → g v) u : is-nonzero-ℤ y → ℤ u g = pr1 (pr1 (K g)) v : is-nonzero-ℤ y → ℤ v g = pr1 (pr2 (pr1 (K g))) β : (g : is-nonzero-ℤ y) → (u g) *ℤ x = y β g = pr2 (K g)
The relations presim-unit-ℤ
and sim-unit-ℤ
are equivalence relations
refl-presim-unit-ℤ : is-reflexive presim-unit-ℤ pr1 (refl-presim-unit-ℤ x) = one-unit-ℤ pr2 (refl-presim-unit-ℤ x) = left-unit-law-mul-ℤ x refl-sim-unit-ℤ : is-reflexive sim-unit-ℤ refl-sim-unit-ℤ x f = refl-presim-unit-ℤ x presim-unit-eq-ℤ : {x y : ℤ} → x = y → presim-unit-ℤ x y presim-unit-eq-ℤ {x} refl = refl-presim-unit-ℤ x sim-unit-eq-ℤ : {x y : ℤ} → x = y → sim-unit-ℤ x y sim-unit-eq-ℤ {x} refl = refl-sim-unit-ℤ x symmetric-presim-unit-ℤ : is-symmetric presim-unit-ℤ symmetric-presim-unit-ℤ x y (pair (pair u H) p) = f (is-one-or-neg-one-is-unit-ℤ u H) where f : is-one-or-neg-one-ℤ u → presim-unit-ℤ y x pr1 (f (inl refl)) = one-unit-ℤ pr2 (f (inl refl)) = inv p pr1 (f (inr refl)) = neg-one-unit-ℤ pr2 (f (inr refl)) = inv (inv (neg-neg-ℤ x) ∙ ap (neg-one-ℤ *ℤ_) p) symmetric-sim-unit-ℤ : is-symmetric sim-unit-ℤ symmetric-sim-unit-ℤ x y H f = symmetric-presim-unit-ℤ x y (H (λ p → f (pair (pr2 p) (pr1 p)))) is-nonzero-sim-unit-ℤ' : {x y : ℤ} → sim-unit-ℤ x y → is-nonzero-ℤ y → is-nonzero-ℤ x is-nonzero-sim-unit-ℤ' {x} {y} H = is-nonzero-sim-unit-ℤ (symmetric-sim-unit-ℤ x y H) is-zero-sim-unit-ℤ' : {x y : ℤ} → sim-unit-ℤ x y → is-zero-ℤ y → is-zero-ℤ x is-zero-sim-unit-ℤ' {x} {y} H = is-zero-sim-unit-ℤ (symmetric-sim-unit-ℤ x y H) transitive-presim-unit-ℤ : is-transitive presim-unit-ℤ transitive-presim-unit-ℤ x y z (pair (pair v K) q) (pair (pair u H) p) = f (is-one-or-neg-one-is-unit-ℤ u H) (is-one-or-neg-one-is-unit-ℤ v K) where f : is-one-or-neg-one-ℤ u → is-one-or-neg-one-ℤ v → presim-unit-ℤ x z pr1 (f (inl refl) (inl refl)) = one-unit-ℤ pr2 (f (inl refl) (inl refl)) = p ∙ q pr1 (f (inl refl) (inr refl)) = neg-one-unit-ℤ pr2 (f (inl refl) (inr refl)) = ap neg-ℤ p ∙ q pr1 (f (inr refl) (inl refl)) = neg-one-unit-ℤ pr2 (f (inr refl) (inl refl)) = p ∙ q pr1 (f (inr refl) (inr refl)) = one-unit-ℤ pr2 (f (inr refl) (inr refl)) = inv (neg-neg-ℤ x) ∙ (ap neg-ℤ p ∙ q) transitive-sim-unit-ℤ : is-transitive sim-unit-ℤ transitive-sim-unit-ℤ x y z K H f = transitive-presim-unit-ℤ x y z ( K (λ (p , q) → f (is-zero-sim-unit-ℤ' H p , q))) ( H (λ (p , q) → f (p , is-zero-sim-unit-ℤ K q)))
sim-unit-ℤ x y
holds if and only if x|y
and y|x
antisymmetric-div-ℤ : (x y : ℤ) → div-ℤ x y → div-ℤ y x → sim-unit-ℤ x y antisymmetric-div-ℤ x y (pair d p) (pair e q) H = f (is-decidable-is-zero-ℤ x) where f : is-decidable (is-zero-ℤ x) → presim-unit-ℤ x y f (inl refl) = presim-unit-eq-ℤ (inv (right-zero-law-mul-ℤ d) ∙ p) pr1 (pr1 (f (inr g))) = d pr1 (pr2 (pr1 (f (inr g)))) = e pr2 (pr2 (pr1 (f (inr g)))) = is-injective-left-mul-ℤ x g ( ( commutative-mul-ℤ x (e *ℤ d)) ∙ ( ( associative-mul-ℤ e d x) ∙ ( ( ap (e *ℤ_) p) ∙ ( q ∙ inv (right-unit-law-mul-ℤ x))))) pr2 (f (inr g)) = p
sim-unit-ℤ |x| x
holds
sim-unit-abs-ℤ : (x : ℤ) → sim-unit-ℤ (int-abs-ℤ x) x pr1 (sim-unit-abs-ℤ (inl x) f) = neg-one-unit-ℤ pr2 (sim-unit-abs-ℤ (inl x) f) = refl sim-unit-abs-ℤ (inr (inl star)) = refl-sim-unit-ℤ zero-ℤ sim-unit-abs-ℤ (inr (inr x)) = refl-sim-unit-ℤ (inr (inr x)) div-presim-unit-ℤ : {x y x' y' : ℤ} → presim-unit-ℤ x x' → presim-unit-ℤ y y' → div-ℤ x y → div-ℤ x' y' pr1 (div-presim-unit-ℤ {x} {y} {x'} {y'} (pair u q) (pair v r) (pair d p)) = ((int-unit-ℤ v) *ℤ d) *ℤ (int-unit-ℤ u) pr2 (div-presim-unit-ℤ {x} {y} {x'} {y'} (pair u q) (pair v r) (pair d p)) = ( ap ((((int-unit-ℤ v) *ℤ d) *ℤ (int-unit-ℤ u)) *ℤ_) (inv q)) ∙ ( ( associative-mul-ℤ ( (int-unit-ℤ v) *ℤ d) ( int-unit-ℤ u) ( (int-unit-ℤ u) *ℤ x)) ∙ ( ( ap ( ((int-unit-ℤ v) *ℤ d) *ℤ_) ( ( inv (associative-mul-ℤ (int-unit-ℤ u) (int-unit-ℤ u) x)) ∙ ( ap (_*ℤ x) (idempotent-is-unit-ℤ (is-unit-int-unit-ℤ u))))) ∙ ( ( associative-mul-ℤ (int-unit-ℤ v) d x) ∙ ( ( ap ((int-unit-ℤ v) *ℤ_) p) ∙ ( r))))) div-sim-unit-ℤ : {x y x' y' : ℤ} → sim-unit-ℤ x x' → sim-unit-ℤ y y' → div-ℤ x y → div-ℤ x' y' div-sim-unit-ℤ {x} {y} {x'} {y'} H K = div-presim-unit-ℤ (presim-unit-sim-unit-ℤ H) (presim-unit-sim-unit-ℤ K) div-int-abs-div-ℤ : {x y : ℤ} → div-ℤ x y → div-ℤ (int-abs-ℤ x) y div-int-abs-div-ℤ {x} {y} = div-sim-unit-ℤ ( symmetric-sim-unit-ℤ (int-abs-ℤ x) x (sim-unit-abs-ℤ x)) ( refl-sim-unit-ℤ y) div-div-int-abs-ℤ : {x y : ℤ} → div-ℤ (int-abs-ℤ x) y → div-ℤ x y div-div-int-abs-ℤ {x} {y} = div-sim-unit-ℤ (sim-unit-abs-ℤ x) (refl-sim-unit-ℤ y)
If we have that sim-unit-ℤ x y
, then they must differ only by sign
is-plus-or-minus-sim-unit-ℤ : {x y : ℤ} → sim-unit-ℤ x y → is-plus-or-minus-ℤ x y is-plus-or-minus-sim-unit-ℤ {x} {y} H with ( is-decidable-is-zero-ℤ x) is-plus-or-minus-sim-unit-ℤ {x} {y} H | inl z = inl (z ∙ inv (is-zero-sim-unit-ℤ H z)) is-plus-or-minus-sim-unit-ℤ {x} {y} H | inr nz with ( is-one-or-neg-one-is-unit-ℤ ( int-unit-ℤ (pr1 (H (λ u → nz (pr1 u))))) ( is-unit-int-unit-ℤ (pr1 (H (λ u → nz (pr1 u)))))) is-plus-or-minus-sim-unit-ℤ {x} {y} H | inr nz | inl pos = inl ( equational-reasoning x = one-ℤ *ℤ x by (inv (left-unit-law-mul-ℤ x)) = (int-unit-ℤ (pr1 (H (λ u → nz (pr1 u))))) *ℤ x by inv (ap (_*ℤ x) pos) = y by pr2 (H (λ u → nz (pr1 u)))) is-plus-or-minus-sim-unit-ℤ {x} {y} H | inr nz | inr p = inr ( equational-reasoning neg-ℤ x = (int-unit-ℤ (pr1 (H (λ u → nz (pr1 u))))) *ℤ x by ap (_*ℤ x) (inv p) = y by pr2 (H (λ u → nz (pr1 u))))
If sim-unit-ℤ x y
holds and both x
and y
have the same sign, then x = y
eq-sim-unit-is-nonnegative-ℤ : {a b : ℤ} → is-nonnegative-ℤ a → is-nonnegative-ℤ b → sim-unit-ℤ a b → a = b eq-sim-unit-is-nonnegative-ℤ {a} {b} H H' K = rec-coproduct ( id) ( λ K' → eq-is-zero-ℤ ( is-zero-is-nonnegative-neg-is-nonnegative-ℤ H ( is-nonnegative-eq-ℤ (inv K') H')) ( is-zero-is-nonnegative-neg-is-nonnegative-ℤ H' ( is-nonnegative-eq-ℤ (inv (neg-neg-ℤ a) ∙ ap neg-ℤ K') H))) ( is-plus-or-minus-sim-unit-ℤ K)
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-10-06. Egbert Rijke and Fredrik Bakke. Torsion-free groups (#813).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).