Subsets of left modules over rings
Content created by Šimon Brandner.
Created on 2025-09-01.
Last modified on 2025-09-12.
module linear-algebra.subsets-left-modules-rings where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-rings open import ring-theory.rings
Idea
A
subset¶
of a left module M
over a
ring R
is a subset of the
underlying type of M
.
Definitions
Subsets of left modules over rings
subset-left-module-Ring : {l1 l2 : Level} (l : Level) (R : Ring l1) (M : left-module-Ring l2 R) → UU (l2 ⊔ lsuc l) subset-left-module-Ring l R M = subtype l (type-left-module-Ring R M) module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M) where type-subset-left-module-Ring : UU (l2 ⊔ l3) type-subset-left-module-Ring = type-subtype S inclusion-subset-left-module-Ring : type-subset-left-module-Ring → type-left-module-Ring R M inclusion-subset-left-module-Ring = pr1
The condition that a subset is closed under addition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M) where is-closed-under-addition-prop-subset-left-module-Ring : Prop (l2 ⊔ l3) is-closed-under-addition-prop-subset-left-module-Ring = Π-Prop ( type-left-module-Ring R M) ( λ x → Π-Prop ( type-left-module-Ring R M) ( λ y → hom-Prop ( S x) ( hom-Prop ( S y) ( S (add-left-module-Ring R M x y))))) is-closed-under-addition-subset-left-module-Ring : UU (l2 ⊔ l3) is-closed-under-addition-subset-left-module-Ring = type-Prop is-closed-under-addition-prop-subset-left-module-Ring
The condition that a subset is closed under multiplication by a scalar
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M) where is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring = Π-Prop ( type-Ring R) ( λ r → Π-Prop ( type-left-module-Ring R M) ( λ x → hom-Prop ( S x) ( S (mul-left-module-Ring R M r x)))) is-closed-under-multiplication-by-scalar-subset-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3) is-closed-under-multiplication-by-scalar-subset-left-module-Ring = type-Prop is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring
The condition that a subset contains zero
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M) where contains-zero-prop-subset-left-module-Ring : Prop l3 contains-zero-prop-subset-left-module-Ring = S (zero-left-module-Ring R M) contains-zero-subset-left-module-Ring : UU l3 contains-zero-subset-left-module-Ring = type-Prop contains-zero-prop-subset-left-module-Ring
The condition that a subset is closed under negations
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M) where is-closed-under-negation-prop-subset-left-module-Ring : Prop (l2 ⊔ l3) is-closed-under-negation-prop-subset-left-module-Ring = Π-Prop ( type-left-module-Ring R M) ( λ x → hom-Prop (S x) (S (neg-left-module-Ring R M x))) is-closed-under-negation-subset-left-module-Ring : UU (l2 ⊔ l3) is-closed-under-negation-subset-left-module-Ring = type-Prop is-closed-under-negation-prop-subset-left-module-Ring
Recent changes
- 2025-09-12. Šimon Brandner. Improve code quality in the linear algebra namespace (#1544).
- 2025-09-12. Šimon Brandner. Add linear combinations, linear spans and tuple concatenation (#1537).
- 2025-09-01. Šimon Brandner. Add submodules of left modules over rings (#1511).