Subsets of left modules over rings

Content created by Šimon Brandner.

Created on 2025-09-01.
Last modified on 2025-09-12.

module linear-algebra.subsets-left-modules-rings where
Imports
open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import linear-algebra.left-modules-rings

open import ring-theory.rings

Idea

A subset of a left module M over a ring R is a subset of the underlying type of M.

Definitions

Subsets of left modules over rings

subset-left-module-Ring :
  {l1 l2 : Level}
  (l : Level) (R : Ring l1) (M : left-module-Ring l2 R)  UU (l2  lsuc l)
subset-left-module-Ring l R M = subtype l (type-left-module-Ring R M)

module _
  {l1 l2 l3 : Level}
  (R : Ring l1)
  (M : left-module-Ring l2 R)
  (S : subset-left-module-Ring l3 R M)
  where

  type-subset-left-module-Ring : UU (l2  l3)
  type-subset-left-module-Ring = type-subtype S

  inclusion-subset-left-module-Ring :
    type-subset-left-module-Ring  type-left-module-Ring R M
  inclusion-subset-left-module-Ring = pr1

The condition that a subset is closed under addition

module _
  {l1 l2 l3 : Level}
  (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M)
  where

  is-closed-under-addition-prop-subset-left-module-Ring : Prop (l2  l3)
  is-closed-under-addition-prop-subset-left-module-Ring =
    Π-Prop
      ( type-left-module-Ring R M)
      ( λ x 
        Π-Prop
          ( type-left-module-Ring R M)
          ( λ y 
            hom-Prop
              ( S x)
              ( hom-Prop
                  ( S y)
                  ( S (add-left-module-Ring R M x y)))))

  is-closed-under-addition-subset-left-module-Ring : UU (l2  l3)
  is-closed-under-addition-subset-left-module-Ring =
    type-Prop is-closed-under-addition-prop-subset-left-module-Ring

The condition that a subset is closed under multiplication by a scalar

module _
  {l1 l2 l3 : Level}
  (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M)
  where

  is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring :
    Prop (l1  l2  l3)
  is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring =
    Π-Prop
      ( type-Ring R)
      ( λ r 
        Π-Prop
          ( type-left-module-Ring R M)
          ( λ x 
            hom-Prop
              ( S x)
              ( S (mul-left-module-Ring R M r x))))

  is-closed-under-multiplication-by-scalar-subset-left-module-Ring :
    UU (l1  l2  l3)
  is-closed-under-multiplication-by-scalar-subset-left-module-Ring =
    type-Prop
      is-closed-under-multiplication-by-scalar-prop-subset-left-module-Ring

The condition that a subset contains zero

module _
  {l1 l2 l3 : Level}
  (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M)
  where

  contains-zero-prop-subset-left-module-Ring : Prop l3
  contains-zero-prop-subset-left-module-Ring = S (zero-left-module-Ring R M)

  contains-zero-subset-left-module-Ring : UU l3
  contains-zero-subset-left-module-Ring =
    type-Prop contains-zero-prop-subset-left-module-Ring

The condition that a subset is closed under negations

module _
  {l1 l2 l3 : Level}
  (R : Ring l1) (M : left-module-Ring l2 R) (S : subset-left-module-Ring l3 R M)
  where

  is-closed-under-negation-prop-subset-left-module-Ring : Prop (l2  l3)
  is-closed-under-negation-prop-subset-left-module-Ring =
    Π-Prop
      ( type-left-module-Ring R M)
      ( λ x  hom-Prop (S x) (S (neg-left-module-Ring R M x)))

  is-closed-under-negation-subset-left-module-Ring : UU (l2  l3)
  is-closed-under-negation-subset-left-module-Ring =
    type-Prop is-closed-under-negation-prop-subset-left-module-Ring

Recent changes