Products of subsets of commutative rings
Content created by Fredrik Bakke, Egbert Rijke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-09.
module commutative-algebra.products-subsets-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.subsets-commutative-rings open import foundation.identity-types open import foundation.subtypes open import foundation.unions-subtypes open import foundation.universe-levels open import ring-theory.products-subsets-rings
Idea
The product of two
subsets S
and T
of a
commutative ring A
is the subset
consistng of products xy
where x ∈ S
and y ∈ T
.
Definition
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) (T : subset-Commutative-Ring l3 A) where product-subset-Commutative-Ring : subset-Commutative-Ring (l1 ⊔ l2 ⊔ l3) A product-subset-Commutative-Ring = product-subset-Ring (ring-Commutative-Ring A) S T
Properties
The product of subsets of commutative rings is associative
module _ {l1 l2 l3 l4 : Level} (A : Commutative-Ring l1) (R : subset-Commutative-Ring l2 A) (S : subset-Commutative-Ring l3 A) (T : subset-Commutative-Ring l4 A) where forward-inclusion-associative-product-subset-Commutative-Ring : ( product-subset-Commutative-Ring A ( product-subset-Commutative-Ring A R S) ( T)) ⊆ ( product-subset-Commutative-Ring A ( R) ( product-subset-Commutative-Ring A S T)) forward-inclusion-associative-product-subset-Commutative-Ring = forward-inclusion-associative-product-subset-Ring ( ring-Commutative-Ring A) ( R) ( S) ( T) backward-inclusion-associative-product-subset-Commutative-Ring : ( product-subset-Commutative-Ring A ( R) ( product-subset-Commutative-Ring A S T)) ⊆ ( product-subset-Commutative-Ring A ( product-subset-Commutative-Ring A R S) ( T)) backward-inclusion-associative-product-subset-Commutative-Ring = backward-inclusion-associative-product-subset-Ring ( ring-Commutative-Ring A) ( R) ( S) ( T) associative-product-subset-Commutative-Ring : product-subset-Commutative-Ring A ( product-subset-Commutative-Ring A R S) ( T) = product-subset-Commutative-Ring A ( R) ( product-subset-Commutative-Ring A S T) associative-product-subset-Commutative-Ring = associative-product-subset-Ring (ring-Commutative-Ring A) R S T
Products distribute over unions of families of subsets
module _ {l1 l2 l3 l4 : Level} (A : Commutative-Ring l1) (S : subset-Commutative-Ring l2 A) {I : UU l3} (T : I → subset-Commutative-Ring l4 A) where forward-inclusion-distributive-product-union-family-of-subsets-Commutative-Ring : product-subset-Commutative-Ring A S (union-family-of-subtypes T) ⊆ union-family-of-subtypes (λ i → product-subset-Commutative-Ring A S (T i)) forward-inclusion-distributive-product-union-family-of-subsets-Commutative-Ring = forward-inclusion-distributive-product-union-family-of-subsets-Ring ( ring-Commutative-Ring A) ( S) ( T) backward-inclusion-distributive-product-union-family-of-subsets-Commutative-Ring : union-family-of-subtypes ( λ i → product-subset-Commutative-Ring A S (T i)) ⊆ product-subset-Commutative-Ring A S (union-family-of-subtypes T) backward-inclusion-distributive-product-union-family-of-subsets-Commutative-Ring = backward-inclusion-distributive-product-union-family-of-subsets-Ring ( ring-Commutative-Ring A) ( S) ( T) distributive-product-union-family-of-subsets-Commutative-Ring : product-subset-Commutative-Ring A S (union-family-of-subtypes T) = union-family-of-subtypes (λ i → product-subset-Commutative-Ring A S (T i)) distributive-product-union-family-of-subsets-Commutative-Ring = distributive-product-union-family-of-subsets-Ring ( ring-Commutative-Ring A) ( S) ( T)
Recent changes
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).