The universal property of identity systems
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-12.
Last modified on 2024-01-31.
module foundation.universal-property-identity-systems where
Imports
open import foundation.dependent-pair-types open import foundation.identity-systems open import foundation.universal-property-contractible-types open import foundation.universal-property-dependent-pair-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.torsorial-type-families
Idea
A (unary) identity system on a type A
equipped with a point a : A
consists of a type family B
over A
equipped with a point b : B a
that
satisfies an induction principle analogous to the induction principle of the
identity type at a
. The
dependent universal property of identity types
also follows for identity systems.
Definition
The universal property of identity systems
dependent-universal-property-identity-system : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {a : A} (b : B a) → UUω dependent-universal-property-identity-system {A = A} B b = {l3 : Level} (P : (x : A) (y : B x) → UU l3) → is-equiv (ev-refl-identity-system b {P})
Properties
A type family satisfies the dependent universal property of identity systems if and only if it is torsorial
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A} (b : B a) where dependent-universal-property-identity-system-is-torsorial : is-torsorial B → dependent-universal-property-identity-system B b dependent-universal-property-identity-system-is-torsorial H P = is-equiv-left-factor ( ev-refl-identity-system b) ( ev-pair) ( dependent-universal-property-contr-is-contr ( a , b) ( H) ( λ u → P (pr1 u) (pr2 u))) ( is-equiv-ev-pair) equiv-dependent-universal-property-identity-system-is-torsorial : is-torsorial B → {l : Level} {C : (x : A) → B x → UU l} → ((x : A) (y : B x) → C x y) ≃ C a b pr1 (equiv-dependent-universal-property-identity-system-is-torsorial H) = ev-refl-identity-system b pr2 (equiv-dependent-universal-property-identity-system-is-torsorial H) = dependent-universal-property-identity-system-is-torsorial H _ is-torsorial-dependent-universal-property-identity-system : dependent-universal-property-identity-system B b → is-torsorial B pr1 (is-torsorial-dependent-universal-property-identity-system H) = (a , b) pr2 (is-torsorial-dependent-universal-property-identity-system H) u = map-inv-is-equiv ( H (λ x y → (a , b) = (x , y))) ( refl) ( pr1 u) ( pr2 u)
A type family satisfies the dependent universal property of identity systems if and only if it is an identity system
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A} (b : B a) where dependent-universal-property-identity-system-is-identity-system : is-identity-system B a b → dependent-universal-property-identity-system B b dependent-universal-property-identity-system-is-identity-system H = dependent-universal-property-identity-system-is-torsorial b ( is-torsorial-is-identity-system a b H) is-identity-system-dependent-universal-property-identity-system : dependent-universal-property-identity-system B b → is-identity-system B a b is-identity-system-dependent-universal-property-identity-system H P = section-is-equiv (H P)
Recent changes
- 2024-01-31. Fredrik Bakke and Egbert Rijke. Transport-split and preunivalent type families (#1013).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-09-14. Egbert Rijke and Fredrik Bakke. Symmetric core of a relation (#754).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).