Central elements of semirings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-03-18.
Last modified on 2023-11-24.
module group-theory.central-elements-semigroups where
Imports
open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.semigroups
Idea
An element x
of a semigroup G
is said to be central if xy = yx
for every
y : G
.
Definition
module _ {l : Level} (G : Semigroup l) where is-central-element-prop-Semigroup : type-Semigroup G → Prop l is-central-element-prop-Semigroup x = Π-Prop ( type-Semigroup G) ( λ y → Id-Prop ( set-Semigroup G) ( mul-Semigroup G x y) ( mul-Semigroup G y x)) is-central-element-Semigroup : type-Semigroup G → UU l is-central-element-Semigroup x = type-Prop (is-central-element-prop-Semigroup x) is-prop-is-central-element-Semigroup : (x : type-Semigroup G) → is-prop (is-central-element-Semigroup x) is-prop-is-central-element-Semigroup x = is-prop-type-Prop (is-central-element-prop-Semigroup x)
Properties
The product of two central elements is central
module _ {l : Level} (G : Semigroup l) where is-central-element-mul-Semigroup : (x y : type-Semigroup G) → is-central-element-Semigroup G x → is-central-element-Semigroup G y → is-central-element-Semigroup G (mul-Semigroup G x y) is-central-element-mul-Semigroup x y H K z = ( associative-mul-Semigroup G x y z) ∙ ( ap (mul-Semigroup G x) (K z)) ∙ ( inv (associative-mul-Semigroup G x z y)) ∙ ( ap (mul-Semigroup' G y) (H z)) ∙ ( associative-mul-Semigroup G z x y)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-18. Egbert Rijke and Maša Žaucer. Central elements in semigroups, monoids, groups, semirings, and rings; ideals; nilpotent elements in semirings, rings, commutative semirings, and commutative rings; the nilradical of a commutative ring (#516).