Sequences in partially ordered sets

Content created by malarbol.

Created on 2025-04-22.
Last modified on 2025-04-22.

module order-theory.sequences-posets where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.propositions
open import foundation.sequences
open import foundation.universe-levels

open import order-theory.posets
open import order-theory.sequences-preorders

Idea

A sequence in a poset is a sequence in its underlying type.

Definitions

Sequences in partially ordered sets

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  type-sequence-Poset : UU l1
  type-sequence-Poset = type-sequence-Preorder (preorder-Poset P)

Pointwise comparison on sequences in partially ordered sets

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  leq-value-prop-sequence-Poset :
    (u v : type-sequence-Poset P)    Prop l2
  leq-value-prop-sequence-Poset =
    leq-value-prop-sequence-Preorder (preorder-Poset P)

  leq-value-sequence-Poset :
    (u v : type-sequence-Poset P)    UU l2
  leq-value-sequence-Poset =
    leq-value-sequence-Preorder (preorder-Poset P)

  leq-prop-sequence-Poset : (u v : type-sequence-Poset P)  Prop l2
  leq-prop-sequence-Poset =
    leq-prop-sequence-Preorder (preorder-Poset P)

  leq-sequence-Poset : (u v : type-sequence-Poset P)  UU l2
  leq-sequence-Poset =
    leq-sequence-Preorder (preorder-Poset P)

  is-prop-leq-sequence-Poset :
    (u v : type-sequence-Poset P) 
    is-prop (leq-sequence-Poset u v)
  is-prop-leq-sequence-Poset =
    is-prop-leq-sequence-Preorder (preorder-Poset P)

Properties

The type of sequences in a poset is a poset ordered by pointwise comparison

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  antisymmetric-leq-sequence-Poset : is-antisymmetric (leq-sequence-Poset P)
  antisymmetric-leq-sequence-Poset u v I J =
    eq-htpy  n  antisymmetric-leq-Poset P (u n) (v n) (I n) (J n))

  sequence-Poset : Poset l1 l2
  pr1 sequence-Poset = sequence-Preorder (preorder-Poset P)
  pr2 sequence-Poset = antisymmetric-leq-sequence-Poset

  refl-leq-sequence-Poset : is-reflexive (leq-sequence-Poset P)
  refl-leq-sequence-Poset =
    refl-leq-Poset sequence-Poset

  transitive-leq-sequence-Poset : is-transitive (leq-sequence-Poset P)
  transitive-leq-sequence-Poset =
    transitive-leq-Poset sequence-Poset

Recent changes