Sequences in partially ordered sets
Content created by malarbol.
Created on 2025-04-22.
Last modified on 2025-04-22.
module order-theory.sequences-posets where
Imports
open import elementary-number-theory.natural-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.propositions open import foundation.sequences open import foundation.universe-levels open import order-theory.posets open import order-theory.sequences-preorders
Idea
A sequence¶ in a poset is a sequence in its underlying type.
Definitions
Sequences in partially ordered sets
module _ {l1 l2 : Level} (P : Poset l1 l2) where type-sequence-Poset : UU l1 type-sequence-Poset = type-sequence-Preorder (preorder-Poset P)
Pointwise comparison on sequences in partially ordered sets
module _ {l1 l2 : Level} (P : Poset l1 l2) where leq-value-prop-sequence-Poset : (u v : type-sequence-Poset P) → ℕ → Prop l2 leq-value-prop-sequence-Poset = leq-value-prop-sequence-Preorder (preorder-Poset P) leq-value-sequence-Poset : (u v : type-sequence-Poset P) → ℕ → UU l2 leq-value-sequence-Poset = leq-value-sequence-Preorder (preorder-Poset P) leq-prop-sequence-Poset : (u v : type-sequence-Poset P) → Prop l2 leq-prop-sequence-Poset = leq-prop-sequence-Preorder (preorder-Poset P) leq-sequence-Poset : (u v : type-sequence-Poset P) → UU l2 leq-sequence-Poset = leq-sequence-Preorder (preorder-Poset P) is-prop-leq-sequence-Poset : (u v : type-sequence-Poset P) → is-prop (leq-sequence-Poset u v) is-prop-leq-sequence-Poset = is-prop-leq-sequence-Preorder (preorder-Poset P)
Properties
The type of sequences in a poset is a poset ordered by pointwise comparison
module _ {l1 l2 : Level} (P : Poset l1 l2) where antisymmetric-leq-sequence-Poset : is-antisymmetric (leq-sequence-Poset P) antisymmetric-leq-sequence-Poset u v I J = eq-htpy (λ n → antisymmetric-leq-Poset P (u n) (v n) (I n) (J n)) sequence-Poset : Poset l1 l2 pr1 sequence-Poset = sequence-Preorder (preorder-Poset P) pr2 sequence-Poset = antisymmetric-leq-sequence-Poset refl-leq-sequence-Poset : is-reflexive (leq-sequence-Poset P) refl-leq-sequence-Poset = refl-leq-Poset sequence-Poset transitive-leq-sequence-Poset : is-transitive (leq-sequence-Poset P) transitive-leq-sequence-Poset = transitive-leq-Poset sequence-Poset
Recent changes
- 2025-04-22. malarbol. Monotonic sequences in posets (#1388).