Sesquilinear forms in complex vector spaces
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
module linear-algebra.sesquilinear-forms-complex-vector-spaces where
Imports
open import complex-numbers.addition-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.conjugation-complex-numbers open import complex-numbers.multiplication-complex-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.complex-vector-spaces
Idea
A map f taking two elements of a
complex vector space is a
sesquilinear form¶
if it:
- is left additive:
- preserves scalar multiplication on the left:
- is right additive:
- conjugates scalar multiplication on the right:
Convention. We follow the convention of conjugating multiplication on the right, as opposed to on the left. This is consistent with what is called the “mathematician’s convention” on Lab, as opposed to what is called the “physicist’s convention”.
Definition
module _ {l1 l2 : Level} (V : ℂ-Vector-Space l1 l2) (f : type-ℂ-Vector-Space V → type-ℂ-Vector-Space V → ℂ l1) where is-left-additive-prop-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-left-additive-prop-form-ℂ-Vector-Space = Π-Prop ( type-ℂ-Vector-Space V) ( λ x → Π-Prop ( type-ℂ-Vector-Space V) ( λ y → Π-Prop ( type-ℂ-Vector-Space V) ( λ z → Id-Prop ( ℂ-Set l1) ( f (add-ℂ-Vector-Space V x y) z) ( f x z +ℂ f y z)))) is-left-additive-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) is-left-additive-form-ℂ-Vector-Space = type-Prop is-left-additive-prop-form-ℂ-Vector-Space preserves-scalar-mul-left-prop-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) preserves-scalar-mul-left-prop-form-ℂ-Vector-Space = Π-Prop ( ℂ l1) ( λ a → Π-Prop ( type-ℂ-Vector-Space V) ( λ x → Π-Prop ( type-ℂ-Vector-Space V) ( λ y → Id-Prop ( ℂ-Set l1) ( f (mul-ℂ-Vector-Space V a x) y) ( a *ℂ f x y)))) preserves-scalar-mul-left-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) preserves-scalar-mul-left-form-ℂ-Vector-Space = type-Prop preserves-scalar-mul-left-prop-form-ℂ-Vector-Space is-right-additive-prop-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-right-additive-prop-form-ℂ-Vector-Space = Π-Prop ( type-ℂ-Vector-Space V) ( λ x → Π-Prop ( type-ℂ-Vector-Space V) ( λ y → Π-Prop ( type-ℂ-Vector-Space V) ( λ z → Id-Prop ( ℂ-Set l1) ( f x (add-ℂ-Vector-Space V y z)) ( f x y +ℂ f x z)))) is-right-additive-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) is-right-additive-form-ℂ-Vector-Space = type-Prop is-right-additive-prop-form-ℂ-Vector-Space conjugates-scalar-mul-right-prop-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) conjugates-scalar-mul-right-prop-form-ℂ-Vector-Space = Π-Prop ( ℂ l1) ( λ a → Π-Prop ( type-ℂ-Vector-Space V) ( λ x → Π-Prop ( type-ℂ-Vector-Space V) ( λ y → Id-Prop ( ℂ-Set l1) ( f x (mul-ℂ-Vector-Space V a y)) ( conjugate-ℂ a *ℂ f x y)))) conjugates-scalar-mul-right-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) conjugates-scalar-mul-right-form-ℂ-Vector-Space = type-Prop conjugates-scalar-mul-right-prop-form-ℂ-Vector-Space is-sesquilinear-prop-form-ℂ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-sesquilinear-prop-form-ℂ-Vector-Space = ( is-left-additive-prop-form-ℂ-Vector-Space) ∧ ( preserves-scalar-mul-left-prop-form-ℂ-Vector-Space) ∧ ( is-right-additive-prop-form-ℂ-Vector-Space) ∧ ( conjugates-scalar-mul-right-prop-form-ℂ-Vector-Space) is-sesquilinear-form-ℂ-Vector-Space : UU (lsuc l1 ⊔ l2) is-sesquilinear-form-ℂ-Vector-Space = type-Prop is-sesquilinear-prop-form-ℂ-Vector-Space sesquilinear-form-ℂ-Vector-Space : {l1 l2 : Level} → ℂ-Vector-Space l1 l2 → UU (lsuc l1 ⊔ l2) sesquilinear-form-ℂ-Vector-Space V = type-subtype (is-sesquilinear-prop-form-ℂ-Vector-Space V) module _ {l1 l2 : Level} (V : ℂ-Vector-Space l1 l2) (f : sesquilinear-form-ℂ-Vector-Space V) where map-sesquilinear-form-ℂ-Vector-Space : type-ℂ-Vector-Space V → type-ℂ-Vector-Space V → ℂ l1 map-sesquilinear-form-ℂ-Vector-Space = pr1 f abstract is-left-additive-sesquilinear-form-ℂ-Vector-Space : (u v w : type-ℂ-Vector-Space V) → map-sesquilinear-form-ℂ-Vector-Space (add-ℂ-Vector-Space V u v) w = ( map-sesquilinear-form-ℂ-Vector-Space u w) +ℂ ( map-sesquilinear-form-ℂ-Vector-Space v w) is-left-additive-sesquilinear-form-ℂ-Vector-Space = pr1 (pr2 f) is-right-additive-sesquilinear-form-ℂ-Vector-Space : (u v w : type-ℂ-Vector-Space V) → map-sesquilinear-form-ℂ-Vector-Space u (add-ℂ-Vector-Space V v w) = ( map-sesquilinear-form-ℂ-Vector-Space u v) +ℂ ( map-sesquilinear-form-ℂ-Vector-Space u w) is-right-additive-sesquilinear-form-ℂ-Vector-Space = pr1 (pr2 (pr2 (pr2 f))) preserves-scalar-mul-left-sesquilinear-form-ℂ-Vector-Space : (a : ℂ l1) (u v : type-ℂ-Vector-Space V) → map-sesquilinear-form-ℂ-Vector-Space (mul-ℂ-Vector-Space V a u) v = a *ℂ map-sesquilinear-form-ℂ-Vector-Space u v preserves-scalar-mul-left-sesquilinear-form-ℂ-Vector-Space = pr1 (pr2 (pr2 f)) conjugates-scalar-mul-right-sesquilinear-form-ℂ-Vector-Space : (a : ℂ l1) (u v : type-ℂ-Vector-Space V) → map-sesquilinear-form-ℂ-Vector-Space u (mul-ℂ-Vector-Space V a v) = conjugate-ℂ a *ℂ map-sesquilinear-form-ℂ-Vector-Space u v conjugates-scalar-mul-right-sesquilinear-form-ℂ-Vector-Space = pr2 (pr2 (pr2 (pr2 f)))
External links
- Sesquilinear form at Wikidata
- Sesquilinear form on Wikipedia
Recent changes
- 2026-01-11. Louis Wasserman. Complex inner product spaces (#1754).