Closed subsets of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.closed-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.complements-subtypes open import foundation.dependent-pair-types open import foundation.dependent-products-subtypes open import foundation.disjunction open import foundation.empty-types open import foundation.existential-quantification open import foundation.function-types open import foundation.intersections-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.closure-subsets-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.dense-subsets-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.discrete-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.open-subsets-metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
A subset S
of a
metric space X
is
closed¶
if its closure is a subset of
S
.
Definition
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where is-closed-prop-subset-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3) is-closed-prop-subset-Metric-Space = leq-prop-subtype (closure-subset-Metric-Space X S) S is-closed-subset-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) is-closed-subset-Metric-Space = type-Prop is-closed-prop-subset-Metric-Space closed-subset-Metric-Space : {l1 l2 : Level} (l3 : Level) (X : Metric-Space l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l3) closed-subset-Metric-Space l3 X = type-subtype (is-closed-prop-subset-Metric-Space {l3 = l3} X) module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : closed-subset-Metric-Space l3 X) where subset-closed-subset-Metric-Space : subset-Metric-Space l3 X subset-closed-subset-Metric-Space = pr1 S is-closed-subset-closed-subset-Metric-Space : is-closed-subset-Metric-Space X subset-closed-subset-Metric-Space is-closed-subset-closed-subset-Metric-Space = pr2 S
Properties
If a set is closed, its closure has the same elements as itself
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where has-same-elements-closure-closed-subset-Metric-Space : {l3 : Level} (S : closed-subset-Metric-Space l3 X) → has-same-elements-subtype ( subset-closed-subset-Metric-Space X S) ( closure-subset-Metric-Space X (subset-closed-subset-Metric-Space X S)) pr1 (has-same-elements-closure-closed-subset-Metric-Space (S , closed-S) x) = is-subset-closure-subset-Metric-Space X S x pr2 (has-same-elements-closure-closed-subset-Metric-Space (S , closed-S) x) = closed-S x
The empty set is closed
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where is-closed-empty-subset-Metric-Space : is-closed-subset-Metric-Space X (empty-subset-Metric-Space X) is-closed-empty-subset-Metric-Space x x∈closure = map-raise (is-empty-closure-empty-subset-Metric-Space X x x∈closure)
A metric space is closed in itself
is-closed-full-subset-Metric-Space : is-closed-subset-Metric-Space X (full-subset-Metric-Space X) is-closed-full-subset-Metric-Space x _ = map-raise star
Every subset of a discrete metric space is closed
module _ {l1 l2 l3 : Level} (X : Discrete-Metric-Space l1 l2) where is-closed-subset-Discrete-Metric-Space : (S : subtype l3 (type-Discrete-Metric-Space X)) → is-closed-subset-Metric-Space ( metric-space-Discrete-Metric-Space X) ( S) is-closed-subset-Discrete-Metric-Space S x x∈closure = let open do-syntax-trunc-Prop (S x) in do (y , y∈N1x , y∈S) ← x∈closure one-ℚ⁺ inv-tr ( type-Prop ∘ S) ( is-discrete-metric-space-Discrete-Metric-Space X one-ℚ⁺ x y y∈N1x) ( y∈S)
The intersection of a family of closed subsets is closed
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) {I : UU l3} (F : I → closed-subset-Metric-Space l4 X) where subset-intersection-family-closed-subset-Metric-Space : subset-Metric-Space (l3 ⊔ l4) X subset-intersection-family-closed-subset-Metric-Space = intersection-family-of-subtypes ( λ i → subset-closed-subset-Metric-Space X (F i)) abstract is-closed-subset-intersection-family-closed-subset-Metric-Space : is-closed-subset-Metric-Space ( X) ( subset-intersection-family-closed-subset-Metric-Space) is-closed-subset-intersection-family-closed-subset-Metric-Space x x∈cl i = is-closed-subset-closed-subset-Metric-Space X (F i) x ( λ ε → map-tot-exists (λ _ (y∈Nεx , y∈F) → (y∈Nεx , y∈F i)) (x∈cl ε)) intersection-family-closed-subset-Metric-Space : closed-subset-Metric-Space (l3 ⊔ l4) X intersection-family-closed-subset-Metric-Space = ( subset-intersection-family-closed-subset-Metric-Space , is-closed-subset-intersection-family-closed-subset-Metric-Space)
If the union of two closed sets is always closed, then LLPO holds
This has yet to be formalized.
In a metric space, the complement of an open metric space is closed
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : open-subset-Metric-Space l3 X) where subset-complement-open-subset-Metric-Space : subset-Metric-Space l3 X subset-complement-open-subset-Metric-Space = complement-subtype (subset-open-subset-Metric-Space X S) is-closed-subset-complement-open-subset-Metric-Space : is-closed-subset-Metric-Space ( X) ( subset-complement-open-subset-Metric-Space) is-closed-subset-complement-open-subset-Metric-Space x x∈cl-¬S x∈S = let open do-syntax-trunc-Prop empty-Prop in do (ε , Nεx⊆S) ← is-open-subset-open-subset-Metric-Space X S x x∈S (y , y∈Nεx , y∈¬S) ← x∈cl-¬S ε y∈¬S (Nεx⊆S y y∈Nεx)
To prove: the converse implies a constructive taboo.
The dependent product of closed subsets is closed in the product metric space
module _ {l1 l2 l3 l4 : Level} {I : UU l1} (X : I → Metric-Space l2 l3) (C : (i : I) → closed-subset-Metric-Space l4 (X i)) where subset-Π-closed-subset-Metric-Space : subset-Metric-Space (l1 ⊔ l4) (Π-Metric-Space I X) subset-Π-closed-subset-Metric-Space = Π-subtype (λ i → subset-closed-subset-Metric-Space (X i) (C i)) is-closed-subset-Π-closed-subset-Metric-Space : is-closed-subset-Metric-Space ( Π-Metric-Space I X) ( subset-Π-closed-subset-Metric-Space) is-closed-subset-Π-closed-subset-Metric-Space f f∈ΠC i = is-closed-subset-closed-subset-Metric-Space ( X i) ( C i) ( f i) ( λ ε → rec-trunc-Prop ( trunc-Prop ( type-subtype ( intersection-subtype ( neighborhood-prop-Metric-Space (X i) ε (f i)) ( subset-closed-subset-Metric-Space (X i) (C i))))) ( λ ( g , g∈Nεf , k) → unit-trunc-Prop (g i , g∈Nεf i , k i)) ( f∈ΠC ε))
A closed subset of a complete metric space is complete
module _ {l1 l2 l3 : Level} (X : Complete-Metric-Space l1 l2) (C : closed-subset-Metric-Space l3 (metric-space-Complete-Metric-Space X)) where is-complete-closed-subspace-Complete-Metric-Space : is-complete-Metric-Space ( subspace-Metric-Space ( metric-space-Complete-Metric-Space X) ( subset-closed-subset-Metric-Space ( metric-space-Complete-Metric-Space X) ( C))) is-complete-closed-subspace-Complete-Metric-Space x = ( ( lim-x , is-closed-subset-closed-subset-Metric-Space ( X') ( C) ( lim-x) ( in-closure-limit-cauchy-approximation-subset-Metric-Space X' ( subset-closed-subset-Metric-Space X' C) ( convergent-cauchy-approximation-Complete-Metric-Space X x') ( λ ε → pr2 (pr1 x ε)))) , is-limit-limit-cauchy-approximation-Complete-Metric-Space X x') where X' = metric-space-Complete-Metric-Space X x' : cauchy-approximation-Metric-Space X' x' = pr1 ∘ pr1 x , pr2 x lim-x = limit-cauchy-approximation-Complete-Metric-Space X x' complete-closed-subspace-Complete-Metric-Space : Complete-Metric-Space (l1 ⊔ l3) l2 complete-closed-subspace-Complete-Metric-Space = ( subspace-Metric-Space ( metric-space-Complete-Metric-Space X) ( subset-closed-subset-Metric-Space ( metric-space-Complete-Metric-Space X) ( C)) , is-complete-closed-subspace-Complete-Metric-Space)
External links
- Closed set at Wikidata
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).