Euclidean division on the natural numbers
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2023-06-25.
module elementary-number-theory.euclidean-division-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.congruence-natural-numbers open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import univalent-combinatorics.standard-finite-types
Idea
Euclidean division is division with remainder, i.e., the Euclidean division of
n
by d
is the largest natural number k ≤ n/d
, and the remainder is the
unique natural number r < d
such that kd + r = n
.
Definitions
Euclidean division via an array of natural numbers
The following definition produces for each k : ℕ
a sequence of sequences as
follows:
This is column k
↓
0,…,0,0,0,0,0,0,0,… -- The sequence at row 0 is the constant sequence
1,0,…,0,0,0,0,0,0,… -- We append 1's at the start
⋮
1,…,1,0,…,0,0,0,0,… -- This is row k+1
2,1,…,1,0,0,0,0,0,… -- After k+1 steps we append 2's at the start
⋮
2,…,2,1,…,1,0,…,0,… -- This is row 2(k+1)
3,2,…,2,1,…,1,0,0,… -- After another k+1 steps we append 3's at the start
⋮
This produces an array of natural numbers. We find the quotient of the euclidean
division of n
by k+1
in the k
-th column of the n
-th row of this array.
We will arbitrarily set the quotient of the euclidean division of n
by 0
to
0
in this definition.
array-quotient-euclidean-division-ℕ : ℕ → ℕ → ℕ → ℕ array-quotient-euclidean-division-ℕ k zero-ℕ m = zero-ℕ array-quotient-euclidean-division-ℕ k (succ-ℕ n) zero-ℕ = succ-ℕ (array-quotient-euclidean-division-ℕ k n k) array-quotient-euclidean-division-ℕ k (succ-ℕ n) (succ-ℕ m) = array-quotient-euclidean-division-ℕ k n m quotient-euclidean-division-ℕ' : ℕ → ℕ → ℕ quotient-euclidean-division-ℕ' zero-ℕ n = zero-ℕ quotient-euclidean-division-ℕ' (succ-ℕ k) n = array-quotient-euclidean-division-ℕ k n k
Euclidean division via modular arithmetic
euclidean-division-ℕ : (k x : ℕ) → Σ ℕ (λ r → (cong-ℕ k x r) × (is-nonzero-ℕ k → le-ℕ r k)) pr1 (euclidean-division-ℕ zero-ℕ x) = x pr1 (pr2 (euclidean-division-ℕ zero-ℕ x)) = refl-cong-ℕ zero-ℕ x pr2 (pr2 (euclidean-division-ℕ zero-ℕ x)) f = ex-falso (f refl) pr1 (euclidean-division-ℕ (succ-ℕ k) x) = nat-Fin (succ-ℕ k) (mod-succ-ℕ k x) pr1 (pr2 (euclidean-division-ℕ (succ-ℕ k) x)) = symmetric-cong-ℕ ( succ-ℕ k) ( nat-Fin (succ-ℕ k) (mod-succ-ℕ k x)) ( x) ( cong-nat-mod-succ-ℕ k x) pr2 (pr2 (euclidean-division-ℕ (succ-ℕ k) x)) f = strict-upper-bound-nat-Fin (succ-ℕ k) (mod-succ-ℕ k x) remainder-euclidean-division-ℕ : ℕ → ℕ → ℕ remainder-euclidean-division-ℕ k x = pr1 (euclidean-division-ℕ k x) cong-euclidean-division-ℕ : (k x : ℕ) → cong-ℕ k x (remainder-euclidean-division-ℕ k x) cong-euclidean-division-ℕ k x = pr1 (pr2 (euclidean-division-ℕ k x)) strict-upper-bound-remainder-euclidean-division-ℕ : (k x : ℕ) → is-nonzero-ℕ k → le-ℕ (remainder-euclidean-division-ℕ k x) k strict-upper-bound-remainder-euclidean-division-ℕ k x = pr2 (pr2 (euclidean-division-ℕ k x)) quotient-euclidean-division-ℕ : ℕ → ℕ → ℕ quotient-euclidean-division-ℕ k x = pr1 (cong-euclidean-division-ℕ k x) eq-quotient-euclidean-division-ℕ : (k x : ℕ) → ( (quotient-euclidean-division-ℕ k x) *ℕ k) = ( dist-ℕ x (remainder-euclidean-division-ℕ k x)) eq-quotient-euclidean-division-ℕ k x = pr2 (cong-euclidean-division-ℕ k x) eq-euclidean-division-ℕ : (k x : ℕ) → ( add-ℕ ( (quotient-euclidean-division-ℕ k x) *ℕ k) ( remainder-euclidean-division-ℕ k x)) = ( x) eq-euclidean-division-ℕ zero-ℕ x = ( inv ( ap ( _+ℕ x) ( right-zero-law-mul-ℕ (quotient-euclidean-division-ℕ zero-ℕ x)))) ∙ ( left-unit-law-add-ℕ x) eq-euclidean-division-ℕ (succ-ℕ k) x = ( ap ( _+ℕ (remainder-euclidean-division-ℕ (succ-ℕ k) x)) ( ( pr2 (cong-euclidean-division-ℕ (succ-ℕ k) x)) ∙ ( symmetric-dist-ℕ x ( remainder-euclidean-division-ℕ (succ-ℕ k) x)))) ∙ ( is-difference-dist-ℕ' (remainder-euclidean-division-ℕ (succ-ℕ k) x) x ( leq-nat-mod-succ-ℕ k x))
map-extended-euclidean-algorithm : ℕ × ℕ → ℕ × ℕ pr1 (map-extended-euclidean-algorithm (pair x y)) = y pr2 (map-extended-euclidean-algorithm (pair x y)) = remainder-euclidean-division-ℕ y x
Recent changes
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-16. Fredrik Bakke. Swap from
md
totext
code blocks (#622). - 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).