The pullback property of pushouts
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2023-06-10.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.pullback-property-pushouts where
Imports
open import foundation.commuting-squares-of-maps open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.function-types open import foundation.precomposition-functions open import foundation.pullbacks open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans
Idea
The
universal property of the pushout
of a span S
can also be stated as a
pullback property: a cocone
c ≐ (i , j , H)
with vertex X
satisfies the universal property of the
pushout of S
if and only if the square
Y^X -----> Y^B
| ⌟ |
| |
∨ ∨
Y^A -----> Y^S
is a pullback square for every type Y
. Below, we
first define the cone of this
commuting square, and then we
introduce the type pullback-property-pushout
, which states that the above
square is a pullback.
Definition
The pullback property of pushouts
cone-pullback-property-pushout : {l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (Y : UU l) → cone (_∘ f) (_∘ g) (X → Y) pr1 (cone-pullback-property-pushout f g c Y) = precomp (horizontal-map-cocone f g c) Y pr1 (pr2 (cone-pullback-property-pushout f g c Y)) = precomp (vertical-map-cocone f g c) Y pr2 (pr2 (cone-pullback-property-pushout f g c Y)) = precomp-coherence-square-maps ( g) ( f) ( vertical-map-cocone f g c) ( horizontal-map-cocone f g c) ( coherence-square-cocone f g c) ( Y) pullback-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UUω pullback-property-pushout f g c = {l : Level} (Y : UU l) → is-pullback ( precomp f Y) ( precomp g Y) ( cone-pullback-property-pushout f g c Y)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).